ÏÀÀ⡧ť¥À¥¤¥¢¥Ô¥ë¼þÊդκնý´äÌ®¤ÎÊý°Ì²òÀϤˤè¤ë¹°è±þÎϤȶɽê±þÎϤθ¡½Ð¡§Ãæ¿·ÅýÅÄÊÕÁØ·²¤ÎÎã
°Âî´·¼ÌÀ¡¦º´Æ£³è»Ö
¡Êvol.127, no.12, p.709-725¡Ë
ÏÀÀ⡧»Í¹ñ»ÍËü½½ÂÓ¥«¥ë¥µ¥¤¥ÈÌ®¤ÎƱ°ÌÂÎÁÈÀ®¤«¤é¤ß¤¿ÄÀ¤ß¹þ¤ßÂÓÃÏ¿ÌȯÀ¸¿¼ÅÙ¤ÎήÂΤε¯¸»
ÆâÅĺڷ¼»³²í»Ë¡¦¾¾¸¶Í§µ±¡¦ºä¸ýÍ¿Í
¡Êvol.127, no.12, p.701-708
ÏÀÀ⡧Ë̾廳ÃÏÃæÀ¾Éô¤ÎÃæ¸ÅÀ¸ÂåÉÕ²ÃÂΤò´Ó¤¯Çò°¡µª´äÌ®·²¤Î´äÁꡦǯÂå¤È´ÓÆþ±þ ÎϲòÀϤ«¤éÆÀ¤é¤ì¤¿°úÄ¥¾ì
ÆâÌîδǷ¡¦±©ÃϽӼù
¡Êvol.127, no.11, p.651-666¡Ë
ÏÀÀ⡧ËÌÉô¶å½£¡¤¼Ü³ÙËÌÉô¤Ë»º¤¹¤ë²ÐÀ®´äÎà¤ÎÇ®¿åÊѼÁºîÍѤÈʬ²½¡¦½¸ÀѺîÍѤòȼ ¤¦º®¹çºîÍѤˤª¤±¤ëÁÈÀ®ÊѲ½
¹¾Å緽ʹ
¡Êvol.127, no.10, p.605-619¡Ë
ÏÀÀ⡧»Í¹ñÀ¾ÉôÃæ¿·Åýµ×ËüÁØ·²¤Î»ÀÀ¶Å³¥´ä¤Î¥¸¥ë¥³¥óU–Pb ǯÂå
¿·ÀµÍµ¾°¡¦ÀÞ¶¶ÍµÆó
¡Êvol.127, no.10, p.595-603¡Ë
ÏÀÀ⡧³·ÁÃî²½Àз²½¸¤Ë´ð¤Å¤¯¿·³ã¸©¿·ÄŵÖÎÍËÌÉô°è¤Î¹¹¿·À¤¤Î¸Å´Ä¶ÊѲ½
»³ÅÄ¡¡·Ë¡¦Æï¡¡·Å»Ò¡¦ÈÓÅÄΤºÚ¡¦µ×¿ÜÈþÚïÉ×
¡Êvol.127, no.9, p.575-591¡Ë
ÏÀÀ⡧»Í¹ñËÌÀ¾Éô¡¤Ãæ¿·Åýµ×ËüÁØ·²ÌÀ¿ÀÁؤ˴ޤޤì¤ë²ÐÀ®´ä㪤ε¯¸»
ÁêÅÄÏÂÇ·¡¦²¼²¬ÏÂÌ顦ë¡¡·ò°ìϺ¡¦Æﶶ¡¡Ä¾¡¦óîÆ£¡¡Å¯
¡Êvol.127, no.9, p.563-574¡Ë
ÏÀÀ⡧Åò¥ÎÂô¥«¥ë¥Ç¥é¡¤Èø³«»³¶Å³¥´ä¤Î¹âÀºÅÙ¡¦¹â³ÎÅÙÊ®½ÐǯÂå¤Î·èÄê
Åĸý½ÕÆᡦÀÞ¶¶ÍµÆ󡦺´¡¹Ìڼ¡¦µÜÅèͤŵ¡¦´äÌî±Ñ¼ù¡¦Ê¿ÅijٻË
¡Êvol.127, no.9, p.545-561¡Ë
Êó¹ð¡§¶å½£ÆîÉô¤ÎÂç¶ù²ÖÖ¾Á®ÎдäÂΤËȯ㤹¤ëÀáÍý·Ï
ÍαÀéÇ»³ËÜ·¼»Ê
¡Êvol.127, no.8, p.489-495¡Ë
ÏÀÀ⡧»³±¢ÂÓÅ纬¸©±ÀÆîÃÏ°è¤ËʬÉÛ¤¹¤ëÂçÅì²ÖÖ¾Á®Îдä¤Î²ÐÀ®³èÆ°
Ìî¸ý¾»Ö¡¦µµ°æ½ß»Ö¡¦ÎëÌÚÇîÈþ¡¦¾®ÎӲƻÒ
¡Êvol.127, no.8, p.461-478¡Ë
ÏÀÀ⡧ËÌÉô¶å½£ÅìÉô¤ËʬÉÛ¤¹¤ëÅÄÀîÊÑÀ®´äÎà¤ÎÊÑÀ®ºîÍÑ
Í®¸¶²í¼ù¡¦À¶±º³¤Î¤¡¦ÆüüâËüè½°¡¡¦³°ÅÄÃÒÀ顦Ááºä¹¯Î´
¡Êvol.127, no.8, p.447-459¡Ë
¥ì¥¿¡¼¡§ÀÄ¿¹¸©ÆîÉô¡¤Äö¥ö´Ø¥«¥ë¥Ç¥é¼çÍ×¹½À®Ê®½Ðʪ¡ÊÆú³¶Å³¥´ä¡Ë¤Î¥¸¥ë¥³¥óLAICP- MS U–Pb ǯÂå
ÁêÀî͵µ®¡¦ÀÞ¶¶ÍµÆ󡦺´¡¹ÌÚ¡¡¼Â¡¦ÃæÈø³¡»Ë¡¦¹âµ×ͺ°ì
¡Êvol.127, no.7, p.431-436¡Ë
ÏÀÀ⡧¶áµ¦ÃÏÊý¤ÎÀ¥¸ÍÆâ¶è¤ËʬÉÛ¤¹¤ë²¼–ÃæÉôÃæ¿·Åý¤ÎÀ¸Áؽø¤ÈÂÐÈæ
Æþ·î½ÓÌÀ¡¦ÌøÂô¹¬Éס¦ÌÚ¼˨¿Í¡¦²ÃÆ£·¼²ð¡¦À±¡¡Ç¡¦ÎÓ¡¡¹¼ù¡¦Æ£¸¶Í´´õ¡¦ÀÖ°æ°ì¹Ô
¡Êvol.127, no.7, p.415-429¡Ë
ÏÀÀ⡧¿·Åç¡ÊdzÅç¡Ë¤Î¸å´ü¹¹¿·À¤Ëö´ü–´°¿·À¤¤ÎÀг¥¼ÁÈù²½Àз²½¸¤È¼¯»ùÅçÏѱü¤Î¸Å ´Ä¶Éü¸µ
Á°ÉÍͪÂÀ¡¦¼¯ÌîÏÂɧ¡¦ÂçÌÚ¸øɧ¡¦Æþ·î½ÓÌÀ¡¦ÎÓ¡¡¹¼ù
¡Êvol.127, no.6, p.363-376¡Ë
½ä¸¡°ÆÆâ½ñ¡§´ôÉ츩À¾Éô¡¦Í¬ÈåÀîÄ®½ÕÆüÃÏ°è¤Î²ÐÀ®´ä¤ÈÀÜ¿¨ÊÑÀ®´ä
±ÝÊÂÀµ¼ù¡¦åöåòͤ°á¡¦²ÃÆ£¾æŵ¡¦ÄÛ°æ´ð͵¡¦Ã°±©·òʸ
¡Êvol.127, no.6, p.313-331¡Ë
¥ì¥¿¡¼¡§Discovery of Early Permian tonalite from the high P/T Triassic Suo Metamorphic Complex, Eastern Yamaguchi Prefecture, SW Japan
Kenta Kawaguchi et al
¡Êvol.127, no.5, p.293-304¡Ë
¥ì¥¿¡¼¡§·§Ëܸ©Å·Áð»Ô¡¤Á°Åç²ÖÖ¾Á®Îдä¤Î¥¸¥ë¥³¥óU–Pb ǯÂå
ĹÅĽ¼¹°¡¦ÂçÆ£¡¡ÌÐ
¡Êvol.127, no.4, p.237-243¡Ë
ÏÀÀ⡧Îп§ÉáÄ̳ÑÁ®ÀФμçÀ®Ê¬¤ª¤è¤ÓÈùÎÌÀ®Ê¬¸µÁÇÁÈ À®¤Ë¤è¤ëÈþÉͥƥեé¤È»Í¹ñ²MD012422 ¥³¥¢¤«¤é¸¡½Ð¤µ¤ì¤¿¥¯¥ê¥×¥È¥Æ¥Õ¥é¤È¤ÎÂÐÈæ¤È µë¸»¤Î¿äÄê¡¥
¸Åß·¡¡ÌÀ¡¦º´¡¹ÌÚ½ÓË¡¡¦¸åÆ£·û±û
¡Êvol.127, no.2, p.91-103¡Ë
ÏÀÀ⡧½©Åĸ©½Ð±©»³ÃϤκû¿¹µÖÎͤËʬÉÛ¤¹¤ë¿·Âè»°·Ï¤ÎÃϼÁ¤È·¾Áô ²½ÀÐÁؽø
²Ãƣͪ¼¤¡¦ÌøÂô¹¬É×
¡Êvol.127, no.2, p.105-120¡Ë
¥ì¥¿¡¼¡§ÀÖÀл³ÃÏÃæ±ûÉô¤Î¾®½ÂÀîÃÏ°è¤ËʬÉÛ¤¹¤ëΦ¸»ºÕ¶ý´ä¤«¤éÆÀ¤é¤ì¤¿Á°´üÇò°¡µª ºÇËö´ü¤ÎºÕ¶ýÀ¥¸¥ë¥³¥ó
»Ö¼ÐÒμ¡¦Ãæ¼²ÂÇ¾ïÈ×ůÌ顦¿ùËÜÂç»Ö¡¦¿å¸ÍÁÏÌé
¡Êvol.127, no.1, p.51-58¡Ë
ÏÀÀ⡧¥Õ¥£¥Ã¥·¥ç¥ó¡¦¥È¥é¥Ã¥¯Ç®Ç¯Âå²òÀϤª¤è¤ÓU–Pb ǯÂå¬Äê¤Ë´ð¤Å¤¤¤¿Æî¶å ½£¤»¤óÃÇÂÓ¤ËʬÉÛ¤¹¤ëÇ˺ÕÂӤγèÆ°»þ´ü
Ëö²¬¡¡ÌС¦ÅçÅĹ̻ˡ¦¾ÈÂô½¨»Ê¡¦´äÌî±Ñ¼ù¡¦Ãɸ¶¡¡Å°¡¦¾®Ë̹¯¹°¡¦Ê¿ÅijٻË
¡Êvol.127, no.1, p.25-39¡Ë
ÏÀÀ⡧ȬȨÉÍÂçÅç¤ËʬÉÛ¤¹¤ëÂçÅçÊÑÀ®´äÂΤΥ¸¥ë¥³¥óU–Pb ǯÂå¤ÈÃÏÂι½Â¤¾å¤Î°ÕµÁ
¾®»³Æ⹯¿Í¡¦ËÌÌî°ìÊ¿¡¦ÃæÌî¿É§¡¦ÂΩãϯ¡¦ÊƼϹɡ¦µÈËÜ¡¡Ì桦µÜ²¼Í³¹áΤ¡¦ÊÆÃî¡¡Á¾®¾¾Àµ¹¬
¡Êvol.127, no.1, p.1-24¡Ë
Êó¹ð¡§°¦Ãθ©Àß³ÚÃÏ°èÅìÉô¤Î´ÓÆþ´äÂΤÎÁ´´ä²½³ØÁÈÀ®¡¤µ±ÅÙ¤ª¤è¤ÓÊѼÁÅÙ
¿Þ»ÒÅÄÏÂŵ¡¦²¬Â¼ÂÀÏ©¡¦Æ󼹯ʿ¡¦Â«ÅÄϹ°¡¦ÃÝÆâ¡¡À¿
¡Êvol.126, no.11, p.645-654¡Ë
¥ì¥¿¡¼¡§µª°ËȾÅçÀ¾Éô¡¤ÏÂÀôÁØ·²ºÇ¾åÉô¤«¤é¤Î¸ÅÂè»°·Ï¤Îȯ¸«
°ëùõ¹Ôͺ¡¦Ä¹Ã«Àî¡¡ÎË¡¦±×ÅÄÀ²·Ã¡¦Äé¡¡Ç·¶³ ¡Êvol.126, no.11, p.639-644¡Ë
¥ì¥¿¡¼¡§Å·Áð²¼ÅçËÌÉô¤ÎÃæ¿·À¤´ÓÆþ´äÂΤÎÊý¸þ¤È±þÎϲòÀÏ
µí´Ý·òÂÀϺ¡¦»³Ï©¡¡ÆØ
¡Êvol.126, no.11, p.631-638¡Ë
¥ì¥¿¡¼¡§Ë̳¤Æ»¿Àµï¸Å߬ÊÑÀ®´äÎàÈÉ·ÌËÚÆâ¥æ¥Ë¥Ã¥È¤«¤é¤Î¿·¤¿¤Ê¥¸¥ë¥³¥óU–PbǯÂå
ĹÅĽ¼¹°¡¦ÂçÆ£¡¡ÌÐ
¡Êvol.126, no.10, p.597-601¡Ë
ÏÀÀ⡧ÅìµþÅÔ»º¸ÅÀ¸ÂåÁ°´ü¤»³ÂÓ¤ÎÃÇÊÒ¡§´ØÅ컳ÃÏÅìÉô¡¤ ¹õÀ¥ÀîÂӹⰵ·¿ÊÑÈä줤´ä¤ª¤è¤Ó²ÖÖ¾´äÎà¤Î¥¸¥ë¥³¥óU–Pb ǯÂå
ÂôÅÄ¡¡µ±¡¦°ëùõ¹Ôͺ¡¦ºäÅļþÊ¿
¡Êvol.126, no.10, p.551-561¡Ë
ÏÀÀ⡧ÁðÄÅÇòº¬²Ð»³¡¤ËÜÇòº¬²ÐºÕµÖ·²¤ÎÃϼÁ¤È·ÁÀ®»Ë
ÀкêÂÙÃË¡¦ÂùÀî¡¡¶Ç¡¦µµÃ«¿»Ò¡¦µÈËܽ¼¹¨¡¦»ûÅĶÇɧ
¡Êvol.126, no.9, p.473-491¡Ë
ÏÀÀ⡧¼¯»ùÅçÏѱü¡¤¿·Åç¤ËϪ½Ð¤¹ ¤ëºÇ¾åÉô¹¹¿·Åý¡Á´°¿·Åý¤ÎÁؽø¤Èµ¯¸»
¼¯ÌîÏÂɧ¡¦ÌøÂô¹¬Éס¦Æ⼸øÂ硦±üÌî¡¡½¼¡¦Ãæ¼½ÓÉ×
¡Êvol.126, no.9, p.519-535¡Ë
ÏÀÀ⡧¶å½£ËÌÉôÊ¡²¬¸©ÃÞËúÅĤλϿ·ÅýľÊýÁØ·²²¼Éô¤Î¥¸¥ë¥³¥óU–Pb ǯÂå
µÜÅÄϼþ¡¦Ä¹ÅĽ¼¹°¡¦¿ÎÌÚÁÏÂÀ¡¦ÉþÉô·òÂÀϺ¡¦ÂçÎÓ½¨¹Ô¡¦Ê¿Åijٻˡ¦ÂçÆ£¡¡ÌÐ
¡Êvol.126, no.5, p.251-266¡Ë
Êó¹ð¡§¿·³ã¸©¤ËʬÉÛ¤¹¤ë7 Ëç¤ÎÂè»Íµª¥Æ¥Õ¥é¤ÎLA-ICP-MS ¤Ë¤è¤ë¥¸¥ë¥³¥óU–Pb ǯÂå
°ËÆ£µ×ÉÒ¡¦Â¼¾¾ÉÒͺ
¡Êvol.126, no.5, p.285-290¡Ë
ÏÀÀ⡧ºë¶Ì¸©²Ã¼£µÖÎͤËʬÉÛ¤¹¤ë²¼Éô¹¹¿·ÅýÊ©»ÒÁؤÎÁؽø¤ÈǯÂå¤ÎºÆ¸¡Æ¤
Ǽëͧµ¬¡¦¿åÌîÀ¶½¨
¡Êvol.126, no.4, p.183–204¡Ë
Êó¹ð¡§µª°ËȾÅçÃæ±ûÉô¤ËʬÉÛ¤¹¤ë»ÍËü½½ÂÓÇò°¡·ÏÅìÀ¥ó¥×¥ì¥Ã¥¯¥¹¤«¤éÆÀ¤é¤ì¤¿ºÕ¶ýÀ¥¸¥ë¥³¥óU–Pb ǯÂå
»Ö¼ÐÒμ¤Û¤«
¡Êvol.126, no.4, p.223–230¡Ë
Êó¹ð¡§ÁðÄÅÇòº¬²Ð»³¡¤Çòº¬²ÐºÕµÖ·²¡¤µÝÃÓ¥Þ¡¼¥ë¤ª¤è¤Ó°©¥ÎÊö²ÐºÕµÖ¤Î´äÀгØŪÆÃħ
µµÃ«¿»Ò¤Û¤«
¡Êvol.126, no.3, p.157-165¡Ë
ÏÀÀ⡧Éٻλ³ÅìÊý¤Ç1.1ka¤ËȯÀ¸¤·¤¿Â絬Ìϲл³À¼ÐÌÌÊø²õ
»³¸µ¹§¹¤Û¤«
¡Êvol.126, no.3, p.127-136¡Ë
ÏÀÀ⡧»°½Å¸©»ÖËàȾÅç¤Î¹õÀ¥ÀîÂÓ¼ØÌæ´äÃæ¥É¥ì¥é¥¤¥È´ä²ô¤ÎÃϵ岽³Ø¤Èµ¯¸»
ÆâÌîδǷ
¡Êvol.126, no.3, p.113-125¡Ë
Êó¹ð¡§ÀÖÀл³ÃÏÃæ±ûÉô¤ËʬÉÛ¤¹¤ëÃáÉãÂÓÉÕ²ÃÂΤκնýÀ¥¸¥ë¥³¥óU–Pb ǯÂå
¿ùËÜÂç»Ö¤Û¤«
¡Êvol.125, no.11, p.827-832¡Ë
ÏÀÀ⡧ÉÙ»³¸©¤ËʬÉÛ¤¹¤ëÂÀÈþ»³ÁØ·²¤Î¥¸¥ë¥³¥óU–PbǯÂå
¶â»Ò°ìÉפۤ«
¡Êvol.125, no.11, p.781-792¡Ë
¥Î¡¼¥È¡§´ÇÈÄ¡¦¿·Ê¹ÀÞ¤ê¹þ¤ß¹¹ð¤È¶µ²Ê½ñ¤Ë¤ª¤±¤ëÃÏ¿Þ¤ÎË̤òɽ¤¹µ¹æ¤Î»ÈÍѤÈÂç³ØÀ¸¤ÎÍý²ò
×¢ÌÚµÁµ×
¡Êvol.125, no.9, p.699-705¡Ë
ÏÀÀ⡧Excel ¤Î¥½¥ë¥Ð¡¼µ¡Ç½¤òÍøÍѤ·¤¿Ç®Îϳط׻»ÊýË¡¡§½Å¿´ºÂɸ·Ï¤Î²½³Ø¼°¤òÍѤ¤¤¿Ç®Îϳط׻»¤Ø¤ÎŬÍÑÎã
µ×Åĸø°ì
¡Êvol.125, no.9, p.635-654¡Ë
ÏÀÀ⡧ÉÙ»³¸©È¬ÈøÃÏ°è¤Î¿·À¸³¦Ç¯ÂåÁؽø¤ÎºÆ¸¡Æ¤¤È¥Æ¥¯¥È¥Ë¥¯¥¹
ÃæÅè¡¡·ò¡¦´äÌî±Ñ¼ù¡¦Ãɸ¶¡¡Å°¡¦»³²¼¡¡Æ©¡¦ÌøÂô¹¬Éס¦Ã«Â¼¹¥ÍΡ¦ÅÏÊÕ¿¿¿Í¡¦º´ÏƵ®¹¬¡¦ÃæÀ¾¡¡ÉÒ¡¦»°ÀÐ͵Ƿ¡¦»³²Êµ¯¹Ô¡¦º£ËÙÀ¿°ì
¡Êvol.125, no.7, p.483-516¡Ë
Êó¹ð¡§Èô驒»³ÃϲòìÂô¤Î²ÖÖ¾´äÎà¤Î¥¸¥ë¥³¥óU–Pb ǯÂå
ÃÝÆâ À¿¡¦¼ÆÅÄ ¸¡¦¥« ¥¹¥¤¡¦»³ËܹݻÖ
¡Êvol.125, no.6, p.453-459¡Ë
Êó¹ð¡§°¦É²¸©µ×Ëü¹â¸¶Ä®¤Î»°ÇÈÀîÊÑÀ®´äÎàÃæ¤Ë¿·¤¿¤Ë¸«¤Ä¤«¤Ã¤¿“ÁÆγ¤Ê”Êѱö´ðÀ´äÂÎ
ÃçÅĸ÷µ±¡¦Æﶶ ľ¡¦óîÆ£ ů¡¦ÂçÆ£¹°ÌÀ¡¦ÆàÎÉÀµÏÂ
¡Êvol.125, no.6, p.447-452¡Ë
ÏÀÀ⡧ËÌÉô¶å½£Çò°¡µª²ÖÖ¾´äÎࡤźÅIJÖÖ¾Á®Îдä¤ÎU–Pb ¥¸¥ë¥³¥óǯÂå¤ÈSr¡¦Nd Ʊ°ÌÂÎÈæÁÈÀ®¡§ÅºÅIJÖÖ¾Á®Îдä¤ÎºÆ¶èʬ
Í®¸¶²í¼ù¡¦µµ°æ½ß»Ö¡¦ÀîÌîÎÉ¿®¡¦²¬Ìî ½¤¡¦Ááºä¹¯Î´¡¦²Ã¡¹Èþ´²Íº
¡Êvol.125, no.6, p.405–420¡Ë
ÏÀÀ⡧µª°ËȾÅçÃæ±ûÉô¤ËʬÉÛ¤¹¤ë¥¸¥å¥éµªÃáÉãÉÕ²ÃÂΤÈÇò°¡µª»ÍËü½½ÉÕ²ÃÂΤ泦¼þÊÕ¤ÎÃϼÁ¹½Â¤¤È ºÕ¶ýÀ¥¸¥ë¥³¥óU–Pb ǯÂå
»Ö¼ÐÒμ¡¦¾ïÈ×ůÌ顦ÃÝÆâ¡¡À¿¡¦»³ËܹݻÖ
¡Êvol.125, no.5, p.349-365¡Ë
ÏÀÀ⡧µª°ËȾÅçÃæ±ûÉô¹â¸¶ÀîÃÏ°è¤ÎÇò°¡µªÉղå³¥ó¥×¥ì¥Ã¥¯¥¹¤ÎºÕ¶ýÀ¥¸¥ë¥³¥óU–Pb ǯÂå
ÂÀÅÄÌÀΤ¡¦ÃÝÆâ¡¡À¿¡¦¥Ê¥É¥ß¥É ¥Ð¥ä¥ë¥È¡¦»³ËܹݻÖ
¡Êvol.125, no.5, p.329-347¡Ë
ÏÀÀ⡧´ôÉ츩¹â»³»ÔËܶ¿ÃÏ°è¤Ë¤ª¤±¤ëÈôÂͳ°±ïÂӤκնý´äÁؤ«¤éÆÀ¤é¤ì¤¿ºÕ¶ýÀ¥¸¥ë¥³¥ó¤ÎU–Pb ǯÂå¤È¤½¤Î°ÕµÁ¡§ ¿¹ÉôÁؤª¤è¤Ó¥¸¥å¥é·ÏƲÅÂÁØ¡Ê¿·¾Î¡Ë¤ÎÂÏÀÑǯÂå
ÎëÌڷɲ𡦷ª¸¶ÉÒÇ·¡¦¿¢ÅÄͦ¿Í
¡Êvol.125, no.4, p.307-322¡Ë
ÏÀÀ⡧½Ð±©»³ÃÏÅì±ï¡¤½©Åĸ©³Ñ´ÛÄ®¼þÊդξåÉôÁ²¿·Åý¤ª¤è¤ÓÃæ¿·Åý¤ÎÁؽø
ºÙ°æ¡¡½ß¡¦¹©Æ£¡¡¿ò¡¦±©ÃϽӼù¡¦´äÌî±Ñ¼ù¡¦Ãɸ¶¡¡Å°¡¦Ê¿ÅijٻË
¡Êvol.125, no.4, p.279-295¡Ë
Êó¹ð¡§Æü¹âÊÑÀ®ÂÓÆîÉô¡¤²«¶âƻϩ±è¤¤¤ËϪ½Ð¤¹¤ë¤«¤ó¤é¤óÀХΡ¼¥é¥¤¥È¤Î´äÀгØŪÆÃħ
»Ö¼½Ó¾¼¡¦¾®Åç ˨¡¦Â綶Èþͳ´õ¡¦»³º¬´´À¸¡¦Anthony I. S. Kemp
¡Êvol.125, no.2, p.195-200¡Ë
ÏÀÀ⡧U–Pb zircon dating of the Sanbagawa metamorphic rocks in the Besshi–Asemi-gawa region, central Shikoku, Japan, and tectonostratigraphic consequences.
Aoki, K., Seo, Y., Sakata, S., Obayashi, H., Tsuchiya, Y., Imayama, T., Yamamoto, S. and Hirata, T
¡Êvol.125, no.2, p.183–194¡Ë
ÏÀÀ⡧»³¸ý¸©ÅìÉô¡¢Ìø°æÃÏ°è¤Ë»º¤¹¤ëÎβÈÂÓ³÷Ìî²ÖÖ¾Á®Îдä¤Î¥Þ¥°¥Þ²áÄø¡¥
ÃÓÅÄͺµ±¡¦ÂçÏÂÅÄÀµÌÀ¡¦À¾ÄÍ Â硦µµ°æ½ß»Ö
¡Êvol. 125¡¤no. 2, 167–182¡Ë
ÏÀÀ⡧˼ÁíȾÅç¤ËʬÉÛ¤¹¤ë¾åÁí ÁØ·²¤Î¹°è¥Æ¥Õ¥é¡ÝÆä˾åÁíÁØ·²²¼Éô¤Ë¤ª¤±¤ë¥Æ¥Õ¥éÁؽø¤È¿·¤¿¤ÊÂÐÈæ¡Ý
Åļ»å»Ò¡¦¿åÌîÀ¶½¨¡¦±§ÅÔµÜÀµ»Ö¡¦ÃæÅèµ±°ô¡¦»³ºêÀ²Íº
¡Êvol.125, no.1, p.23-39¡Ë
Êó¹ð¡§Geochemical database of Japanese islands for basement rocks: compilation of domestic article
Satoru Haraguchi, Kenta Ueki, Kenta Yoshida, Tatsu Kuwatani, Mika Mohamed, Shunsuke Horiuchi and Hikaru Iwamori
¡Êvol.124, no.12, p.1049-1054¡Ë
ÁíÀ⡧ÈþÇ»ÂÓÁؾõ¥Á¥ã¡¼¥È¤ÎÂÏÀÑ´ó¹Æ¤Ë´Ø¤¹¤ë3¤Ä¤ÎÌäÂê
Èø¾åů¼£¡Êvol.124, no.12, p.1021-1032¡Ë
ÏÀÀ⡧»°½Å¸©¤ËʬÉÛ¤¹¤ëÃæ¿·Åý°ì»ÖÁØ·²¾åÉô¤ÎÉâÍ·À͹¦Ã·¾Áô²½ÀÐÁؽø
Âç¿®ÅÄɧËᡦÎÓ¡¡¹¼ù¡¦ÌøÂô¹¬Éס¦·ª¸¶¹Ô¿Í¡¦À±¡¡Ç
¡Êvol.124, no.11, p.919-933¡Ë
Êó¹ð¡§New geochemical data for back-arc basin basalts from DSDP Leg 58 Sites 442–444 and the ODP Leg 131 Site 808, Shikoku Basin Keywords: Shikoku Basin, back-arc basin basalt, DSDP Leg 58 Site 442–444, ODP Leg 131 Site 808, recent analytical technique
Satoru Haraguchi, Koichiro Fujinaga, Kentaro Nakamura, Yasuhiro Kato, Asuka Yamaguchi, and Teruaki Ishii
¡Êvol.124, no. 11, p.935-940¡Ë
ÏÀÀ⡧ÆÊÌÚ¸©ËÌÉô¡¤Ê¡Å縩ÆîÉô¤ËʬÉÛ¤¹¤ëÃæ´ü¹¹¿·À¤²ÐºÕήÂÏÀÑʪ·²¤ÎÁؽø
»³ÅÄâÿ󡦲Ϲ絮Ƿ¡¦À¾ß·Ê¸¾¡¡¦ÎëÌÚµ£É§
¡Êvol.124, no. 10¡¤p.837-855¡Ë
ÏÀÀ⡧´ä¼ê¸©À¾Ï²ìÄ®¤ËʬÉÛ¤¹¤ë¥°¥ê¡¼¥ó¥¿¥Õ¤Î¥¸¥ë¥³¥óFT ¤ª¤è¤ÓU–Pb ǯÂå¤È¤½¤Î°ÕÌ£
ºÙ°æ¡¡½ß¡¦ÃæÅè¡¡·ò¡¦Ãɸ¶¡¡Å°¡¦´äÌî±Ñ¼ù¡¦Ê¿Åijٻˡ¦Å·Ìî°ìÃË
¡Êvol.124, no. 10¡¤p.819-835¡Ë
ÏÀÀ⡧ÆüËܳ¤³ÈÂç°ÊÍè¤ÎÆüËÜÎóÅç¤ÎÂÏÀÑËߥƥ¯¥È¥Ë¥¯¥¹
ÃæÅè¡¡·ò
¡Êvol.124, no. 9¡¤p.693-722¡Ë
ÏÀÀ⡧ÀÖÀл³ÃÏ»ÍËü½½ÂÓÇò°¡·ÏÀÖÀÐÁØ·²¤«¤éÆÀ¤é¤ì¤¿ºÕ¶ýÀ¥¸¥ë¥³¥óU-PbǯÂå
¾ïÈØůÌ顦»ÔëÏÂÌ顦»Ö¼ÐÒμ¡¦ÃÝÆâ¡¡À¿¡¦»³ËܹݻÖ
¡Êvol.124, no. 7¡¤p.539-544¡Ë
ÏÀÀ⡧²Ð»³¥¬¥é¥¹¤Î¼çÀ®Ê¬¤ª¤è¤ÓÈùÎ̸µÁÇÁÈÀ®¤Ë¤è¤ë¼¯»ùÅç»Ô±ÊÅÄÀî²Ï¸ýÉô¤Ç·¡ºï ¤µ¤ì¤¿¥Ü¡¼¥ê¥ó¥°¥³¥¢¤Ë¶´¤Þ¤ì¤ë²ÐºÕήÂÏÀÑʪ¤Î¼±ÊÌ
¸Åß·¡¡ÌÀ¡¦ÂçÌÚ¸øɧ¡¦µÜÏÆÍý°ìϺ
¡Êvol.124, no. 6¡¤p.435-447¡Ë
ÏÀÀ⡧´ä¼ê²Ð»³¤Ë¤ª¤±¤ëºÇ¶á1Ëüǯ´Ö¤ÎÇúȯŪʮ²ÐÍúÎò¤ÎºÆ¸¡Æ¤¡§¿å¾øµ¤Ê®²Ð¤È¥Þ¥°¥ÞÊ®²Ð¤Î»þ¶õ´ÖŪ´ØÏ¢
°ËÆ£½ç°ì¡¦ßÀºêÁï»Ö¡¦ÀîÊÕÄ÷µ×
¡Êvol.124, no. 4¡¤p.271-296¡Ë
ÏÀÀ⡧2014 ǯ¤ÎĹÌ¿À¾ëÃÇÁØÃϿ̤ÎÁ°¸å¤Ë¤ª¤±¤ë¿·³ã¸©½½ÆüÄ®»Ô¼¼ÌîÅ¥²Ð»³¤ÎÍϸ¥¬¥¹Ç»ÅÙ¤ÈúÁÇƱ°ÌÂÎÈæ¤ÎÊѲ½
³Áºê´î¹¨¡¦¥·¥å¥Ê¥¤¥À¡¼ ¥°¥ì¥ó¡¦Ãª¶¶¡¡³Ø¡¦ÀÐÅÄľ¿Í¡¦¾¾ËÜ¡¡ÎÉ
¡Êvol.124, no. 2¡¤p.127-140¡Ë
¥Î¡¼¥È¡§Áöºº·¿X ÀþʬÀϸ²Èù¶À¤È²èÁü½èÍý¡¦²òÀÏ¥½¥Õ¥È¥¦¥§¥¢¤òÍѤ¤¤¿¥â¡¼¥É¬Äê
¿¢ÌÚÃéÀµ¡¦Ã°±©ÀµÏÂ
¡Êvol.123, no. 12¡¤p.1061-1066¡Ë
Appendixs
Êó¹ð¡§Ê¼¸Ë¸©ËÌÉô¡¤»³±¢³¤´ß¥¸¥ª¥Ñ¡¼¥¯±îÈøÂìÉÕ¶á¤ÎÃæ´üÃæ¿·À¤¥é¥³¥ê¥¹
±©ÃϽӼù¡¦»³Ï©¡¡ÆØ
¡Êvol.123, no12¡¤p.1049-1054¡Ë
Figs & Tables
ÏÀÀ⡧»°½Å¸©»ÖËàȾÅ硤ÃáÉãÎßÂÓËÌÂÓÇòÌÚÁØ·²¤ÎÅ¥´ä¤«¤éÆÀ¤é¤ì¤¿Ãæ´ü¥¸¥å¥éµªÊü»¶Ãî²½ÀФÈÃϼÁÂÐÈæ
ÆâÌîδǷ¡¦ÎëÌÚµªµ£
¡Êvol.123, no12¡¤p.1015-1033¡Ë
Appendix
ÏÀÀ⡧µª°ËȾÅçÃæ±ûÉô¤ËʬÉÛ¤¹¤ë»ÍËü½½ÂÓÇò°¡·ÏÇþëÁؤÎÃϼÁ¤ÈºÕ¶ýÀ¥¸¥ë¥³¥óU-PbǯÂå
»Ö¼ÐÒμ¡¦¾ïÈØůÌ顦ÃÝÆâ¡¡À¿¡¦»³ËܹݻÖ
¡Êvol.123, no11¡¤p.925-937¡Ë
Appendix
ÁíÀ⡧Åç¸Ì-ÂçΦÃϳ̿¼Éô¸½¾Ý¤Î¸¦µæ¿ÊŸ¡§Ä¶¹â²¹ÊÑÀ®ºîÍѤÎÀºÌ©²òÀÏ
¾®»³Æ⹯¿Í¡¦ÃæÌî¿É§¡¦ÂΩãϯ
¡Êvol.123, no10¡¤p.879-906¡Ë
Figs. S1-S4, Table S1
ÏÀÀ⡧¥ì¡¼¥¶¡¼¥¢¥Ö¥ì¡¼¥·¥ç¥óICP¼ÁÎÌʬÀÏÁõÃÖ¤òÍѤ¤¤¿²Ð»³¥¬¥é¥¹¤ÎʬÀϤˤè¤ë½½ÏÂÅÄ¥«¥ë¥Ç¥éµ¯¸»ÂçÉÔÆ°¥Æ¥Õ¥é¤ÈȬ¸Í¥Æ¥Õ¥é¤Î¼±ÊÌ
¸Åß·¡¡ÌÀ
¡Êvol.123, no.9¡¤p.765-776¡Ë
Appendix 1.
Appendix 1. Analyttical result of AT tephra and ATHO-G glass shards for major element compositions using EDX and trace elemental concentration in AT tephra and ATHO-G glass shards determined by LA-ICP-MS. Av.: average, SD: standard deviation, U: uncertainty at 95% confidence level,n: number of an
ÁíÀ⡧ÃϼÁ²¹ÅÙ·×°µÎϷפκǶá¤Î¿ÊŸI¡§ÊÑÀ®²¹ÅÙ°µÎϤοôÃͲòÀÏ
ÀîÖ¿ÃÒͤ
¡Êvol.123, no.9¡¤p.699-706¡Ë
Supplementary programme 1¡¤2¡¤3
Supplementary programme 1¤Ë¸òÅÀ¤È¤½¤Î¸íº¹¤ò·×»» ¤¹¤ëFORTRAN77 ¥×¥í¥°¥é¥à“Intersection”¤òºÜ¤»¤¿¡¥ Supplementary programme 2¡¤3 ¤ËºÇ¾®2 ¾èË¡¤òÍѤ¤¤¿ ÊÑÀ®²¹ÅÙ°µÎϤȤ½¤Î¸íº¹¡¤Ç¤°Õ¤ÎP–T ¶ÊÀþ¤Î¸òÅÀ¤È¤½¤Î¸í º¹¡¤¸òÅÀ¤ÎÊ¿¶ÑÃͤȤ½¤Î¸íº¹¤ò·×»»¤¹¤ëFORTRAN77 ¥× ¥í¥°¥é¥à“Weight-free P–T estimate”¤È“Weighted P–T estimate”¤òÍ¿¤¨¤¿¡¥
ÏÀÀ⡧¥¸¥ë¥³¥óU–Pb ǯÂ夫¤é¤ß¤¿²¼Éô¥¸¥å¥é·ÏÍèÇÏÁØ·²¤ÎÂÏÀÑǯÂå
ÃÝÆâ¡¡À¿¡¦¾ïÈ×ůÌ顦·§ºêľ¼ù¡¦²£ÅĽ¨À²¡¦»³ËܹݻÖ
¡Êvol.123, no.5¡¤p.335-350¡Ë
Appendix 1.
U–Pb isotope data for zircons analyzed in this study. All errors are 2s. %conc = 100Ž¥(238U–206Pb age)/(235U–207Pb age) is a measure of concordance between 238U–206Pb and 235U–207Pb ages. Shading indicates discordant data that are not included in the probability density plots or histograms.
Êó¹ð¡§Petrography and whole-rock major and trace element analyses of igneous rocks from Iheya North Knoll, middle Okinawa Trough, SIP Expedition CK14-04 (Exp. 907)
Toru Yamasaki
¡Êvol.123, no.1¡¤p.23-29¡Ë
Appendix Table 1 Analytical results of reference materials.
Appendix A: Methods
ÏÀÀ⡧»³·Á¸©¾±Æ⺽µÖ¤Ë¶´¤Þ¤ì¤ë2 ÁؤθÅÄÅÇÈÂÏÀÑʪ
»³Ìî°æ¡¡Å°¡¦Ìç³ðÅß¼ù¡¦²ÃƣϹÀ¡¦»³ÅÄ¡¡ÅØ¡¦³ùÅÄδ»Ë¡¦º£Ìî¡¡¿Ê
Two tsunami deposits in the Shonai Sand Dunes, northeast Japan
¡Êvol.122, no.12¡¤p.637-652¡Ë
Appendix 1. Radiocarbon ages obtained for dateable materials from the event deposits.
ÏÀÀ⡧µª°ËȾÅç¤ËʬÉÛ¤¹¤ë»ÍËü½½ÂӶų¥¼Áº½´ä¤ÎºÕ¶ýÀ¥¸¥ë¥³¥ó¤ÎU–Pb ǯÂå¤È¤½¤Î°ÕµÁ
¾ïÈ×ůÌ顦ÃÝÆâ¡¡À¿¡¦»Ö¼ÐÒμ¡¦ÂÀÅÄÌÀΤ¡¦»³ËܹݻÖ
U–Pb ages of detrital zircon from the tuffaceous sandstone of the Shimanto Belt in the Kii
Peninsula
¡Êvol.122, no.12¡¤p.625-635¡Ë
Appendix 1¡Á5. LA-ICP-MS U–Pb isotopic data. Analyses shown in italics are discordant data¡Êprobability ¡å 0.1¡Ë, and are not included in the probability density pot and histogram.
All errors are quoted at 2σ. 206Pbc¡§common 206Pb.
ÏÀÀ⡧´äÀгØŪ¤Ë¤ß¤¿¾ÂÂô²Ð»³¤Ë¤ª¤±¤ë¥Þ¥°¥Þί¤ê¤ÎĹ´üŪ¿Ê²½¤È¥«¥ë¥Ç¥é·ÁÀ®Ê®²Ð¤Î½àÈ÷²áÄø
ÁýÞ¼²Â»Ò¡¦ÀкêÂÙÃË¡¦Çò°æÃҿΡ¦¾¾ËÜ°¡´õ»Ò¡¦µÜºä¿ðÊ桦ÃæÀî¸÷¹°
Petrological investigation of long-term evolution of magma chambers and preparing processes of caldera-forming eruption, Numazawa volcano, NE Japan
Yoshiko Masubuchi, Yasuo Ishizaki, Tomohito Shirai, Akiko Matsumoto, Mizuho, Amma-Miyasaka and Mitsuhiro Nakagawa
¡Êvol.122, no.10¡¤p.533-550¡Ë
Appendix. 1-4
½ä¸¡°ÆÆâ½ñ¡§ÍÕ»³–Î沬Âӥȥé¥Ð¡¼¥¹¡ÊÂè123ǯ³Ø½ÑÂç²ñ½ä¸¡C¥³¡¼¥¹¡Ë
¹â¶¶Ä¾¼ù¡¦¼ÆÅÄ·ò°ìϺ¡¦Ê¿ÅÄÂçÆ󡦿·°æÅĽ¨°ì
Geologic traverse from the Mineoka Belt to the Hayama Belt, Central Japan
Naoki Takahashi, Kenichiro Shibata, Daiji Hirata and Shuichi Niida
¡Êvol.122, no.8¡¤p.375-395¡Ë
Appendix. Caption¡ÊPDF¡Ë
Appendix. 1¡Á11¡ÊPDF¡Ë
Appendix. 12¡Á21¡ÊPDF¡Ë
ÏÀÀ⡧Íøº¬ÀîÄãÃϤˤª¤±¤ë¡ÖÌïÀ¸¤Î¾®³¤Âà¡×¤Î¸¡¾Ú
ÅÄÊÕ¡¡¿¸¡¦ËÙ¡¡ÏÂÌÀ¡¦É´¸¶¡¡¿·¡¦ÃæÅç¡¡Îé
Verification of the “Yayoi regression” in the Tonegawa Lowland, central Japan
Susumu Tanabe, Kazuaki Hori, Arata Momohara and Rei Nakashima
¡Êvol.122, no.4¡¤p.135-153¡Ë
Appendix¤Î°ì³ç¥À¥¦¥ó¥í¡¼¥É¡ÊPDF;6.3MB¡Ë
Fig. A1. Stratigraphic columns of core sediments used in this study.
Fig. A2. Diatom assemblages. Relative abundances of marine–brackish–freshwater species (left) are expressed as percentages of the total number of frustules counted. Relative abundances of freshwater-species ecologies (right) are expressed as percentages of the total number of frustules counted in freshwater species. More than 100 frustules were counted from each sample. Black circles indicate that the counted frustules make up <1% of the total counted frustules.
Fig. A3. Photographs of plant macrofossils. (a) Ruppia rostellata fruit, (b) Najas marina seed, (c) Potamogeton distinctus fruit, (d) Trapa fruit (spine). Scale bar, 1 mm.
Table A1. Locations and penetration depths of sediment cores used in this study.
Table A2. Sea-level index points from Toyama Bay (Fujii,1992). Measured 14C ages were converted into conventional 14C ages using δ13C values of –27.5‰ and 0‰ for plant and shell, respectively.
ÏÀÀ⡧ÀÖ¾ë²Ð»³·ÚÀÐÊ®²Ð´ü¤Î¥Þ¥°¥ÞÊ®½ÐΨ¤ÈÁÈÀ®¤ÎÊѲ½
»³¸µ¹§¹
Magma-discharge rate and geochemical evolution during the pumice-eruption stage of Akagi Volcano, NE Japan.
Takahiro Yamamoto
¡Êvol.122, no.3¡¤p.109-126¡Ë
Appendix¤Î°ì³ç¥À¥¦¥ó¥í¡¼¥É¡ÊPDF;1.4MB¡Ë
Appendix 1. List of outcrops.
Appendix 2. Major element contents of volcanic glass shards. obtaimed by EDX measurements.
Appendix 3. Whole rock chemical compositions of pumices. Major and trace-elements were measured by ICP optical and mass spectrometry.
Appendix 4-1. Thickness contours for the volcanic cone of younger Akagi Volcano.
Appendix 4-2. Thickness contours for the Itoi and Fudo Pumice Flow Deposits.
Appendix 4-3. Thickness contours for the Tanashita Pumice Flow Deposit.
Appendix 4-4. Thickness contours for the Fujiki Pumice Flow Deposit.
Appendix 4-5. Thickness contours for the Wakubara Pumice Flow Deposit.
Appendix 4-6. Thickness contours for the Ogo Pumice Flow Deposit.
Appendix 4-7. Thickness contours for the Toshimaru Pumice Flow Deposit.
Appendix 4-8. Thickness contours for the Nagumo Pumice Flow Deposit.
ÏÀÀ⡧Îò»Ë»þÂå¤ËÊ®½Ð¤·¤¿Æ±°ì²Ð»³Í³Íè¤Î·ÚÀÐÁؤÎƱÄꡧµÜºêÊ¿Ìî¤Ç¸«½Ð¤µ¤ì¤¿ºùÅçʸÌÀ¥Æ¥Õ¥é¤ÎÎã
À¸ÅÄÀµÊ¸¡¦Ã°±©ÀµÏ¡¦Ãɸ¶ Å°¡¦»³²¼ Æ©¡¦´Ý»³À¿»Ë¡¦³ùÂ칧¿®¡¦¾®ÎÓůÉס¦¹õß·±Ñ¼ù¡¦Ô¢Ê¬¡Êã·Æ£¡ËÍÛ»Ò¡¦Ê¿ÅijٻË
Identification of pumice derived from historic eruption in the same volcano: Case study for the
Sakurajima-Bunmei tephra in the Miyazaki Plain.
Masafumi Ikuta, Masakazu Niwa, Tohru Danhara, Tohru Yamashita, Seiji Maruyama, Takanobu Kamataki, Tetsuo Kobayashi, Hideki Kurosawa, Yoko Saito-Kokubu and Takafumi Hirata
¡Êvol.122, no.3¡¤p.89-107¡Ë
¡Ê¤½¤ì¤¾¤ì¤Î¿ÞÈÖ¹æ¤ò¥¯¥ê¥Ã¥¯¤¹¤ë¤ÈPDF¤¬¥À¥¦¥ó¥í¡¼¥É¤Ç¤¤Þ¤¹¡Ë
Table S1. Chemical compositions of volcanic glass shards, determined by LA–ICP–MS.
ÏÀÀ⡧»Í¹ñÃæ±ûÉô¤ÎÃæ±û¹½Â¤ÀþÃÇÁØÂÓÀî¾åÃÇÁØÅìüÉô¤Ë¤ª¤±¤ë·²Îó¥Ü¡¼¥ê¥ó¥°Ä´ºº
ÃÓÅÄÎѼ£¡¦ÄÔ¡¡ÃÒÂ硦¸åÆ£½¨¾¼¡¦Äé¡¡¹ÀÇ·¡¦¶½Äž»¹¨¡¦ÌøÅÄ¡¡À¿¡¦ÂçÌî͵µ¡¦À¾ºäľ¼ù
Arrayed-boring survey near the eastern end of the Kawakami fault of the Median Tectonic Line Active Fault Zone in central Shikoku, southwest Japan
Michiharu Ikeda, Tomohiro Tsuji, Hideaki Goto, Hiroyuki Tsutsumi, Masahiro Okitsu¡¤Makoto Yanagida, Yuki Ohno and Naoki Nishizaka
¡Êvol.121, no.11¡¤p.403-419¡Ë
¡Ê¤½¤ì¤¾¤ì¤Î¿ÞÈÖ¹æ¤ò¥¯¥ê¥Ã¥¯¤¹¤ë¤ÈPDF¤¬¥À¥¦¥ó¥í¡¼¥É¤Ç¤¤Þ¤¹¡Ë
Appendix 1. TPhotographs of each core (Br. A to Br. D). Yellow and red dashed outlines indicate Unit 2 and Unit 4, respectively. Unit 4 occurs in Br. A, Br. B and Br. C, but not in Br. D. Small numerals show depth in meters.
Appendix 2. Photographs and unit sub-divisions in the depth range –9.4 to –10.4 m of Br. D. Small numerals show elevation in meters.
ÏÀÀ⡧˼ÁíȾÅ硤¿·Âè»°·Ï°Â˼ÁØ·²¾åÉô¤Îthin-skin ÊÑ·Á¤Èêù¶Ê
¸Å³Ñ¹¸ÍΡ¦º´Æ£³è»Ö¡¦»³Ï©¡¡ÆØ
The thin-skinned deformations and folding of the upper Awa Group (Neogene) in the Boso Peninsula, Japan
Akihiro Kokado, Katsushi Sato and Atsushi Yamaji
¡Êvol.121, no.10¡¤p.359-372¡Ë
¥Õ¥¡¥¤¥ë¥À¥¦¥ó¥í¡¼¥É¤Ï¤³¤Á¤é
Appendix A. Tuff marker beds originally identified by the author.
Appendix B. Fault-slip data for the Amatsu, Kiyosumi, and Anno formations in the study area. F, ‘full’ fault-slip data which consist of orientations of the fault planes, lineations,and senses of movements; L, ‘line-only’ fault-slip data which lack senses of movements; S, ‘sense-only’ fault-slip data which lack orientations of lineations; N, normal shear sense; R, reverse shear sense; D, dextral shear sense; S,sinistral shear sense; U, unknown shear sense.
Appendix C. Route map in the study area, showing the locations where fault-slip data were obtained.
ÏÀÀ⡧°ËƦÂçÅç2013 ǯ¥é¥Ï¡¼¥ë¤ÎÂÏÀѳØŪÆÃħ¡§¥é¥Ï¡¼¥ëÂÏÀÑʪ¤ÎγÅÙÁÈÀ®¤Ë¤è¤ëʬÎà
»³¸µ¹§¹¡¦ÀîÊÕÄ÷µ×
Sedimentary characteristics of the Izu-Oshima 2013 lahar: classification of various lahar deposits based on grain-size distribution
Takahiro Yamamoto and Yoshihisa Kawanabe
¡Êvol.120, no.7¡¤p.233-245¡Ë
¥Õ¥¡¥¤¥ë¥À¥¦¥ó¥í¡¼¥É¤Ï¤³¤Á¤é
Appendix 1. Sample list.
ÏÀÀ⡧Ȣº¬²Ð»³·²¡¤¶¯ÍåÉÕ¶á¤Î¸å¥«¥ë¥Ç¥éÃϼÁȯã»Ë
èßǯ°ì¹ä
Post-caldera geology of Gora Region in Hakone Volcano Group, Japan
Kazutaka Mannen
¡Êvol.120, no.4¡¤p.117-136¡Ë
¥Õ¥¡¥¤¥ë¥À¥¦¥ó¥í¡¼¥É¤Ï¤³¤Á¤é
Open file 1 Selected pollen diagrams for the #5, #6, #10, #41, and JMA wells. See Fig. 3 for well locations.
Open file 2 Number and percentage of fossil pollen grains in unit 6 of the JMA-V29 borehole.
Open file 3 Fossil diatoms in unit 6 of the JMA-V29 borehole.
Open file 4 Whole-rock major element (wt%) and trace element (ppm) compositions of volcanic clasts in JMA-V29 borehole samples, as determined by XRF.
Open file 5 Whole-rock major element (wt%) and trace element (ppm) compositions of volcanic clasts and lavas samples from boreholes near borehole JMA-V29, as determined by XRF.
ÏÀÀ⡧Zircon U–Pb age and its geological significance of late Carboniferous and Early Cretaceous adakitic granites from eastern margin of the Abukuma Mountains, Japan
Nobutaka Tsuchiya, Tomoyo Takeda, ,Kenichiro Tani, Tatsuro Adachi, Nobuhiko Nakano, Yasuhito Osanai and Jun-Ichi Kimura
¡Êvol.120, no.2¡¤p.37-51¡Ë
¥Õ¥¡¥¤¥ë¥À¥¦¥ó¥í¡¼¥É¤Ï¤³¤Á¤é
Open file 1. Petrography of analyzed samples.
Open file 2. Photomicrographs of the‘ Wariyama Sheared Granodiorite.’ A: Medium-grained tonalite (KAKUDA7, PPL); B: medium-grained tonalite (KAKUDA7, CPL); C: medium-grained tonalite (KAKUDA9, PPL); D: medium-grained tonalite (KAKUDA9, CPL); E: coarse-grained quartz diorite (11111322, PPL); F: coarse-grained quartz diorite (11111322, CPL); G: coarse-grained tonalite (11111205, PPL); H: coarsegrained tonalite (11111205, CPL). Abbreviations, Hbl: hornblende; Bt: biotite; Pl: plagioclase; Kfs: K-feldspar; Qtz: quartz; Ttn: titanite; PPL: plain polarized light; CPL: crossed polarized light.
Open file 3. Sampling locality.
ÏÀÀ⡧À¾ÆîË̳¤Æ»¡¤¹¹¿·À¤ÅÏÅç¾®Åç²Ð»³¤ÎÃϼÁ¤È´äÀгØŪÆÃħ
¾®¿ù°ÂͳÈþ¡¦ÃæÀî¸÷¹°¡¦À¶Ìî´²»Ò
¡Êvol.119, no.12¡¤p.743-758¡Ë
¥Õ¥¡¥¤¥ë¥À¥¦¥ó¥í¡¼¥É¤Ï¤³¤Á¤é
Appendix 1. Whole-rock chemical compositions of representative samples from the Oshima-Kojima volcano. Unit names are as in Table 1. Sample localities are shown in Fig. 3.
Appendix 2. Sr and Nd isotopic compositions of wholerock samples from the Kariba-yama, Oshima-Oshima, and Megata volcanoes.
Êó¹ð¡§¥¹¥È¥é¥¦¥ÖË¡¤Ë¤è¤ë¥·¡¼¥È¾õ¥¿¡¼¥Ó¥À¥¤¥ÈÁØÎß½ÅÍͼ°¤ÎÄêÎ̸¡½Ð¡§Ë¼ÁíȾÅçÃæ¿·Åý¡ÝÁ¯¿·ÅýÀ¶À¡ÁؤÎÎã
±ºËܹë°ìϺ¡¦À¶²È°ìÇÏ
¡Êvol.119, no.10¡¤p.693-698¡Ë
¥Õ¥¡¥¤¥ë¥À¥¦¥ó¥í¡¼¥É¤Ï¤³¤Á¤é
¢þAppendix 1. Equations of the modified Straub method for mesuring the standard deviation of the sedimentation rate within a given measurement time window for the discretized terrestrial outcrop data (Uramoto and Seike, 2012).
ÏÀÀ⡧²ÆìÅ礪¤è¤Ó¼þÊÕ½ôÅç¤ËʬÉÛ¤¹¤ëÀè¿·Âè»°·Ï´ðÈ×´äÎà¤ÎÁ´´ä²½³ØÁÈÀ®¤ÈºÕ¶ýÀ¥¶¥¯¥íÀв½³ØÁÈÀ®¡¥
µÜ¾ëľ¼ù¡¦ÇϾìÁÔÂÀϺ¡¦¿·¾ëε°ì
¡Êvol.119, no.10¡¤p.665–678¡Ë
¥Õ¥¡¥¤¥ë¥À¥¦¥ó¥í¡¼¥É¤Ï¤³¤Á¤é
Table 1. Representative major (oxides: wt.%) and trace elements (in ppm) compositions of sandstones in the study area¡¥
Table 2. Representative major (oxides: wt.%) and trace element (in ppm) compositions of greenstones in the study area¡¥
Table 3. Representative chemical composition of detrital garnet.
ÏÀÀ⡧¾ïΦÂæÃϤˤª¤±¤ë²¼ÁíÁØ·²ÌÚ²¼ÁؤΥƥեéÁؽø¤È¹°èÂÐÈæ
Âç°æ¿®»°¡¦²£»³Ë§½Õ¡¦À¾Ï¢ÃÏ¿®ÃË¡¦°ÂÆ£¼÷ÃË
¡Êvol.119, no.7¡¤p.488–505¡Ë
¥Õ¥¡¥¤¥ë¥À¥¦¥ó¥í¡¼¥É¤Ï¤³¤Á¤é
¢þAppendix 1. Locations of the studied outcrops.
¢þAppendix 2. Average major element chemistry of glass shards in tephra layers from the Kioroshi Formation of the Upper Pleistocene Shimosa Group in the Hitachi Terraces. (a) Br-Sc, Bk-Sc, ArP, Nk-Yt, TAu-3, Ob, TAu-9, OiP, KtP, Tephra 20 (1), and Nm-SB. Refer to Fig. 1 for locations of the tephra samples. n: number of analyses. Standard deviations are shown below the average values. *1: Ooi and Yokoyama (2011), *2 measured by SEM with a wide beam to cover a larger analytical area.
ÏÀÀ⡧ÅìËÌÆüËÜ¡¤Àç´äÃÏÇ®ÃÏ°èÆîÉô¡¤¹âÁҲл³¤Î»³ÂηÁÀ®»Ë¤È¥Þ¥°¥Þ¶¡µë·Ï
Ãæëºé»Ò¡¦Ä¹Ã«Àî¡¡·ò¡¦Æ£ÆìÌÀɧ¡¦¾È°æÈ¥»Ò
¡Êvol.119, no.7¡¤p.457–473¡Ë
¥Õ¥¡¥¤¥ë¥À¥¦¥ó¥í¡¼¥É¤Ï¤³¤Á¤é
¢þAppendix 1. Petrography of the Takinosawa and Takakurasan lava series. – = not found, E = euhedral, S = subhedral, A = anhedral, IG = intergranular, IS = intersertal.
¢þAppendix 2. Sample location map showing sample numbers and localities based on Fig. 5.
ÏÀÀ⡧ÏÂÀô»³Ì®ÃÏ°è¤Ë¤ª¤±¤ëÏÂÀôÁØ·²¤Î͵¡Êª½ÏÀ®¤ÈÂÏÀÑËߤÎËäË×¥â¥Ç¥ë¡¥
À¶²È°ìÇÏ¡¦Ê¿Ìî¹°Æ»
¡Êvol.119, no.6¡¤p.397–409¡Ë
¥Õ¥¡¥¤¥ë¥À¥¦¥ó¥í¡¼¥É¤Ï¤³¤Á¤é
¢þAppendix 1. List of samples from the Izumi Mountains, Kinki district, and the Asan Mountains, Shikoku Island. * = Distance from the northern marginal unconformity of the Izumi sedimentary basin; ** = Basin width distance; *** = Distance from Matsuyama (132°42’00” E).
¢þAppendix 2. Sample localities of Suzuki (1996) and values of mean random vitrinite reflectance (Rm) converted from maximum vitrinite reflectance (Rmax) values of Suzuki (1996). * = Rm value; ** = Estimates based on Koch and Gunther (1995), using Rm = 0.7469Rmax + 0.2241; *** = Distance from the northern end of the northern marginal facies; **** = Basin width distance; ***** = Distance from Matsuyama (132°42’00” E).
¢þAppendix 3. Random vitrinite reflectance (Rr) histograms for 43 samples from the Izumi Group. Class width of each population is 0.05% reflectance; triangles indicate the mean values (Rm) for each sample.
¢þAppendix 4. Mean random vitrinite reflectance (Rm) and Rock-Eval Tmax values for the Izumi Group of the Izumi Mountains and the Asan Mountains. Maximum paleotemperatures (Tpeak) were estimated using (A) Tpeak = 104 ln (Rm) + 148 (Barker , 1988), and (B) Tpeak = (ln(Rm) + 1.68)/0.0124 (Barker and Pawlewicz, 1994). Std = standard deviation; “n.d.” denotes not measured.
¡¡¡¡
ÏÀÀ⡧Å纬¸©½Ð±À»ÔÆîÊýÃÏ°è¤Ë¤ª¤±¤ëÃæ¿·Åý¤ÎK–Ar ǯÂå¤È¸ÅÃϼ§µ¤Êý°Ì
ÂôÅĽ繰¡¦»°Âå´î¹°¡¦º£²¬¾È´î¡¦µÈÅÄÀ»Åµ¡¦°ðÅÄÍýº»¡¦µ×°æÏÂÆÁ¡¦¶áÆ£¡¡¿Î¡¦Ê¼Æ¬À¯¹¬
(vol.119, no.4¡¡p.267-284)
¥Õ¥¡¥¤¥ë¥À¥¦¥ó¥í¡¼¥É¤Ï¤³¤Á¤é
¢þTable 1. Mineral K–Ar ages of analyzed samples from the Miocene in the southern Izumo Basin with the sample number, rock type, formation, occurrence and location (longitude and latitude) of analyzed samples.
¢þTable 2. Whole rock K-Ar ages of analyzed samples from the Miocene in the southern Izumo Basin with the sample number, rock type, formation, occurrence and location (longitude and latitude) of analyzed samples.
¢þTable 3.Paleomagnetic directions of the Miocene and the Yoshida Plutonic Complex in the Izumo Basin.
¢þTable 4. Whole rock K–Ar ages of the Miocene in Ohda and Yasugi cities, Shimane Prefecture(Sawada and Itaya, unpublished data) with the sample number, rock type, formation, occurrence and location (longitude and latitude) of analyzed samples.
ÉÕÏ¿.¡¡K-ArǯÂå¬Äê¤ËÍѤ¤¤é¤ì¤¿´äÀлîÎÁ¤ÎµºÜ
ÏÀÀ⡧¥Õ¡¼¥ê¥¨²òÀϤȥե饯¥¿¥ë¼¡¸µ¤Ë¤è¤ëºÕ¶ýʪγ·Á¤ÎÄêÎÌÊýË¡¤ÈÂÏÀѾìȽÊÌÊýË¡¤ÎÄó¼¨
ÎëÌÚ·ÄÂÀ¡¦¼ò°æˮ͵¡¦ÂÀÅÄ¡¡µü
(vol.119, no.3¡¡p.205-216)
¢þAppendix 1. Scores of each index for all particles obtained during this study.
¢þAppendix 2. Output files giving the results of principal component analysis; the PCR file enables the calculation of EF1, EF2, and EF3 scores for any given grain, and the PDF file contains Appendix 2a–e.
¥Î¡¼¥È¡§¿½Ì¼«ºß°õºþÍÑ¥Õ¥£¥ë¥à¤ò³èÍѤ·¤¿Î©ÂÎÃÏ·Á¥â¥Ç¥ë¤ÎºîÀ½¤È¤½¤Î¶µºà²½¤Î»î¤ß
°ËÆ£¡¡¹§¡¦²¬ºêÃÒÄá»Ò¡¦¼Ç¸¶¶Çɧ¡¦ß·Â¼¡¡´²¡¦»°ÅÄľ¼ù
(vol.119, no.1¡¡p.39-44)
¥Õ¥¡¥¤¥ë¥À¥¦¥ó¥í¡¼¥É¤Ï¤³¤Á¤é
¢þOpen File 1. Outline of the preparation techniques used informing a solid geomorphological model covered with mapprinted OK film.
¢þOpen File 2. View of the laboratory used for classes, focusing on covering a solid geomorphological model with mapprinted OK film, (1) outlining of the procedures involved in OK film covering and examples of potential applications, (2) removal of extraneous OK film with scissors, (3) application of special adhesive onto the cast surface using the index finger, and (4) drying the OK film-covered casts using hairdryers.
¢þOpen File 3. Timetable for a laboratory class focusing on forming a solid geomorphological model covered with mapprinted OK film, and observation of the model produced during the class in Earth Science Experiment B.
¥Î¡¼¥È¡§213 nm Nd-YAG ¥ì¡¼¥¶¡¼¥¢¥Ö¥ì¡¼¥·¥ç¥óICP ¼ÁÎÌʬÀÏÁõÃÖ¤òÍѤ¤¤¿¥¸¥ë¥³¥ó¤ÎU-Pb ¶É½êǯÂåʬÀÏ¡§SHRIMP ¥Ç¡¼¥¿¤È¤ÎÀ°¹çÀ¤Î¸¡Æ¤
¾¡Éô°¡Ìð¡¦Ááºä¹¯Î´¡¦ºä¸ý¡¡°½¡¦¹â¶¶²ÅÉ×
(vol.118, no.11¡¡p.762-767)
¢þAppendix 1. LA-ICP-MS isotopic data for standard zircons (Plešovice, SL13, AS3, QGNG).
ÏÀÀ⡧Ë̳¤Æ»Æü¹âÂÓ¥Ý¥í¥·¥ê¥ª¥Õ¥£¥ª¥é¥¤¥ÈËÌÉôÃÏ°è¤ÎÃϼÁ¤ÈÊÑÀ®ºîÍÑ
ÅÄÃæ¿¿Æó¡¦ÌÚºê·ò¼£¡¦µÜ²¼½ãÉ×
(vol.118, no.11¡¡p.723-740)
¢þTable A1. Representative amphibole analyses showing compositional zoning in porphyroclast cores and rims and in matrix amphiboles within upper schistose amphibolite in the Chiroro River area.
¢þTable A2. Representative analyses of amphibole from greenschist, upper schistose amphibolite, and later dolerite dykes in the Chiroro River area.
¢þTable A3. Representative analyses of plagioclase from greenschist, upper schistose amphibolite, and later dolerite dykes in the Chiroro River area.
¥Î¡¼¥È¡§Ìî³°¼Â½¬¤È¼¼Æâ¼Â¸³¤ò¼è¤êÆþ¤ì¤¿³Ø¹»¶µ°÷¸þ¤±½ä¸¡¤Î¼ÂÁ©Êó¹ð¡§ÃÏÁؤϤ®¼è¤êɸËܤȴʰ׿åÏ©¼Â¸³¤Î¼ø¶È¤Ç¤Î³èÍѤòÌܻؤ·¤Æ
¿¢ÌÚ³ÙÀ㡦°ËÆ£¡¡¹§¡¦ÃæÌî±ÑÇ·¡¦¾®Èø¡¡Ì÷¡¦ËÒÌîÂÙɧ
(vol.118, no.6¡¡p.387-392.)
¢þTable A. Questionnaire items.
¢þTable B. Reasons given by participants for their choice of the most impressive stop during the excursion.
¢þTable C. Improvements to the excursion suggested by participants.
¢þTable D. How to use a peel specimen of sediments in a school lesson, as suggested by participants.
¢þTable E. How to conduct a simplified flume experiment in a school lesson, as suggested by participants.
¢þTable F. Other impressions of the entire excursion from participants.
¢þTable G. References on the implementation of earth science education in schools using regional materials.
¡ÚTable A–G. PDF¡Û
ÏÀÀ⡧»Í¹ñËÌÀ¾Éô¤ÎÃæ±û¹½Â¤Àþ³èÃÇÁØ·Ï°ËͽÃÇÁؤδ°¿·À¤³èÆ°ÍúÎò
ÃÓÅÄÎѼ£¡¤¸åÆ£½¨¾¼¡¤Äé¡¡¹ÀÇ·¡¤Ïª¸ý¹Ì¼£¡¤ÂçÌî͵µ¡¤À¾ºäľ¼ù¡¤¾®ÎÓ½¤Æó
(vol.118, no.4¡¡p.220-235.)
¢þTable 1. Description of strata exposed on the Miaki trench walls.
¢þTable 2. Radiocarbon ages for samples from the Miaki trench site.
¢þTable 3. Description of strata exposed on the Ichiba trench walls.
¢þTable 4. Radiocarbon ages for samples from the Ichiba trench site.
¡ÚTable 1–4¡Û
ÏÀÀ⡧LA-ICP-MS U–Pb zircon and FE-EPMA U–Th–Pb monazite dating of pelitic granulites from the Mt. Ukidake area, Sefuri Mountains, northern Kyushu
Adachi, T., Osanai, Y., Nakano, N. and Owada, M.,
(vol.118, no.1¡¡p.39-52.)
¢þFig. A1. Representative time-resolved isotopic ratio profiles determined by ablation of zircons from Temora (a) and an unknown sample (060101A) (b). In the case of these analyses, isotopic ratios are consistent between 48 to 120 s for the Temora sample and 53 and 120 s for sample 060101A. These portions of data were integrated and then calibrated during age determination.
¢þTable A1. Short- and long-term precision of U–Pb isotope ratios and calculated ages of the FC-1 zircon standard.
¢þTable A2. U–Pb isotope ratios and calculated ages from analysis of zircons from Temora and the Itoshima granodiorites calibrated against the FC-1 zircon standard.
¢þTable A3. Comparison of U–Pb isotope ratios and calculated age data from analysis of the FC-1 zircon with different laser beam diameters.
¢þTable A4. Chemical compositions and U–Th–Pb ages of reference monazites.
¡ÚFig. A1¡¤Table 1–4¡Û
ÁíÀ⡧ÃϼÁ³Ø¤Ë¤ª¤±¤ëÊý¸þ¥Ç¡¼¥¿²òÀÏË¡¡§±ß¼þ¥Ç¡¼¥¿¤ÎÅý·×³Ø
¿·°æ¹¨²Å
(vol.117, no.10¡¡p.547-564.)
¢þAppendix 1. (PDF) Synthetic circular data (100 random deviates in each case) drawn from circular distributions.
¢þAppendix 2. (PDF) Applications of circular statistics software.
ÏÀÀ⡧µÜ¾ë¸©²ÂçÃϿ̤ÎÁ°Ãû¤òª¤¨¤ë¤¿¤á¤Î¿¼ÁØÃϲ¼¿åÊÑÆ°¸¦µæ¡§2008ǯ2·î¡Á2009ǯ12·î¤Î´Ñ¬·ë²Ì
¼¯Åçͺ²ð¡¦Æî¿Ü¸¶Èþ·Ã¡¦Ãæ¼δ»Ö¡¦»³Æâ¾ïÀ¸¡¦ÂçÄзû»ÍϺ
(vol.117, no.8¡¡p.451-467.)
¢þFig. A (PDF)
Hourly data of the groundwater temperature, water level and the precipitation during 2008 and 2009 at the Atago (AT, Fig. Aa), Yamoto (YM, Fig. Ab) and Minamikata (MN, Fig. Ac) observation sites. BAYTAP-G was applied to the hourly data of water level from all observation sites using the barometric pressure as an associate data. The smooth component output from BAYTAP-G is approximated by the linear equations for the data from the AT and YM observation sites, while approximated by a 3rd-order polynomial equation for the data from the MN observation site. The values of water level shown in the figures represent the residuals of the smooth component from these regression equations. Since the raw data of groundwater temperature from all observation sites contains only very small components of the tidal and barometric effects, BAYTAP-G was not applied. The raw data from the AT and YM observation sites and those before April 16, 2009 from the MN observation site were approximated by a 2nd-order polynomial equation, a linear equation and a 4th-order polynomial equation, respectively. The water temperature data after June 12, 2009 from the MN observation site contain the significant daily fluctuations of unknown causes. After they were removed by the Fourier inverse transform, they were approximated by a 2nd-order polynomial equation. The residuals from these regression equations were plotted in the figures. The data of precipitation obtained from the nearby observatories of Japan Meteorological Agency show the time-series clusters. The cumulative precipitations for every cluster are plotted in the figure. Numerals 1, 2, 3 and 4 in circles denote the times of the off-Ibaraki Prefecture earthquake (MJ7.0) on May 8, 2008, Iwate-Miyagi inland earthquake (MJ7.2) on June 14, 2008, off-Fukushima Prefecture earthquake (MJ6.9) on July 19, 2008, and the northern Iwate prefecture coast earthquake on July 24, 2008 (MJ6.8). Note that the observed water level at the MN observation site after the Iwate-Miyagi inland earthquake is 400 mm lower than those shown in Fig. Ac.
ÏÀÀ⡧ʮ½Ðʪ¤Î¹½À®ÊªÁÈÀ®¤ÈËܼÁʪ¼Á¤ÎÁ´´ä¤ª¤è¤Ó¹ÛʪÁÈÀ®¤«¤é¸«¤¿Å¥Âô²Ð»³¤ÎBC3400¥«¥ë¥Ç¥é·ÁÀ®Ê®²Ð¡ÊÅ¥Âô¸ÐÊ®²Ð¡Ë¤Î¥Þ¥°¥Þ¶¡µë·Ï
ÁýÞ¼²Â»Ò¡¦ÀкêÂÙÃË
(vol.117, no.6¡¡p.357-376.)
¢þAppendix 1. (PDF) Representative modal compositions
Sampling sites and stratigraphic levels are shown in Figs. 1, 2 and 7. Abbreviations: WP, white pumice; GP, gray pumice; BS, black scoria; GS, gray scoria; Pl, plagioclase; Amp, amphibole; Opx, orthopyroxene; Qtz, quartz; Opq, opaque minerals; Xe, xenolith; Ph, phenocryst.
¢þAppendix 2. (PDF) Representative whole-rock compositions.
Total Fe expressed as Fe2O3. For plotting on the Harker diagrams (Fig. 7), the FeO* is assumed to be FeO + 0.8998 Fe2O3. Sampling sites and stratigraphic levels are shown in Figs. 1, 2, 3 and 6. Abbreviations: WP, white pumice; GP, gray pumice; BS, black scoria; GS, gray scoria.
¢þAppendix 3. (PDF) Representative silicate mineral compositions (core compositions). Abbreviations: WP, white pumice; GP, gray pumice; BS, black scoria; GS, gray scoria.
* An = 100 × Ca/(Ca + Na + K) in cation units.
** Mg# = 100 × Mg/(Mg + Fet) in cation units, where Fet is total Fe, as Fe2+.
¢þAppendix 4. (PDF) Composition of coexisting Fe-Ti oxides Abbreviations: WP, white pumice; GP, gray pumice; BS, black scoria; GS, gray scoria; Mag, magnetite; Ilm, ilmenite; XUlv, mole fraction of ulvöspinel; XIlm, mole fraction of ilmenite.
* Calculated using the method of Stormer (1983).
** Calculated using the QUILF 6.42 software package (Anderson et al., 1993) applying technique of Manley and Bacon (2000). The pressure dependence of the geothermometer is slight, and a pressure of 200 MPa was assumed in all calculations.
ÏÀÀ⡧¿·³ãÂÏÀÑËß¼·Ã«ÁØÃæ¤Ë¸«¤Ä¤«¤Ã¤¿Ãæ´üÃæ¿·À¤¹°è¥Æ¥Õ¥é¡§Kbi¥Æ¥Õ¥é¤Èµª°ËȾÅç¼¼À¸²ÐºÕήÂÏÀÑʪ¤ÎÂÐÈæ
¹©Æ£¡¡¿ò¡¦Ãɸ¶¡¡Å°¡¦´äÌî±Ñ¼ù¡¦»³²¼¡¡Æ©¡¦»°ÎØÈþÃÒ»Ò¡¦Ê¿¾¾¡¡ÎÏ¡¦ÌøÂô¹¬É×
(vol.117, no.5¡¡p.277-288.)
¢þFig. 1. Photomicrograph of reddish and colorless zircons from the Kbi tephra.
ÁíÀ⡧³·ÁÃî¤Î³Ì¤ÎMg/CaÈæ, Sr/CaÈæ¤Ë¤è¤ë¸Å´Ä¶¿äÄê¤Î¸½¾õ¤ÈÌäÂêÅÀ
¿¹²¼Ãι¸¡¦»³¸ýζɧ¡¦âüƵ×Ï¡¦¿Àëδ¹¨
(vol.116, no.10¡¡p.523-543.)
¢þAppendix 1. (PDF)Results of statistic tests. Abbreviations: S.D. = standard deviation, N = number of analyses, df = degree of freedom. The result of the tests follows: n.s., no significance; *, p<0.05; **, p<0.01¡¥
¢þAppendix 2. (PDF)Superfamily, family, locality, Taxon Codes, and references of the examined ostracode taxa.
Êó¹ð¡§µª°ËȾÅ硤Ãæ¿·À¤²ÐÀ®´äÎà¤Î¥¢¥Ñ¥¿¥¤¥È¤Î¥Õ¥£¥Ã¥·¥ç¥ó¡¦¥È¥é¥Ã¥¯Ç¯Âå
´äÌî±Ñ¼ù¡¦Ãɸ¶¡¡Å°¡¦À±¡¡Ç
(vol.115, no.8¡¡p.427-432.)
¢þFig. A1.Analytical results of the sample MR1-Fl(Ap).
¢þFig. A2.Analytical results of the sample MR70(Ap).
¢þFig. A3.¡¡Analytical results of the sample SKB2(Ap).
¢þFig. A4.¡¡Analytical results of the sample SKB2(Ap)_2.
¢þFig. A5.¡¡Analytical results of the sample SKB2(Ap)_3.
¢þFig. A6.¡¡Analytical results of the sample KSSP(Ap).
¢þFig. A7.¡¡Analytical results of the sample AS01(Ap).
¢þFig. A8.¡¡Analytical results of the sample TG02(Ap).
¢þFig. A9.¡¡Analytical results of the sample KAR-N3(Ap).
¢þFig. A10.¡¡Analytical results of the sample KAR4e(Ap).
¢þFig. A11.¡¡Analytical results of the sample KAR5(Ap).
¢þFig. A12.¡¡Analytical results of the sample KOZA2(Ap)
ÏÀÀ⡧Ìëµ×Ì¥Õ¥£¥ª¥é¥¤¥ÈÄ«Íè´äÂΤˤª¤±¤ë¸ÅÀ¸Â峤ÍÎÆâÅç¸ÌÃϳ̤ηÁÀ®¤È¿Ê²½²áÄø
¶ùÅľ͸÷¡¦Ááºä¹¯Î´
(vol.115, no.6¡¡p.266-287.)
¢þAppendix 1¡¡¡¡Major oxides (in wt. %) and trace elemental abundances (in ppm) for the Yakuno rocks in the Asago body. Total Fe as FeO. Abbreviations: hb mtgb, hornblende metagabbro; amph., amphibolite; qtz monzodiorite, quartz monzodiorite; leuco., leucosome.
Appendix 1-1(PDF) ¡¡¡¡Appendix 1-2(PDF) ¡¡¡¡Appendix 1-3(PDF)
¢þAppendix 2¡¡¡¡Mineral–melt partition coefficients. Data sources: Ar Arth (1976); BD Bacon and Druitt (1988); Bi Binderman et al. (1998); Bo Bougault and Hekinian (1974); Do Dostal et al. (1983); DS Dunn and Sen (1994); EG Ewart and Griffin (1994); Fj Fujimaki (1986); Fu Fujimaki et al. (1984); Gi Gill (1981); Gr Green et al. (2000); GP Green and Pearson (1987); I interpolated or extrapolated; Ha Hauri et al. (1994); JN Jang and Naslund (2003); MH Mahood and Hildreth (1983); Ma Martin (1987); MC McCallum and Charette (1978); NS Nagasawa and Schnetzler (1971); NC Nash and Crecraft (1985); Ni Nielsen et al. (1992); PN Pearce and Norry (1979); PS Philpotts and Schnetzler (1970); Ro Rollinson (1993); Si Sisson (1994); SH Stimac and Hickmott (1994); ZB Zack and Brumm (1998) Mineral abbreviations: pl, plagioclase; hbl, hornblende; cpx, clinopyroxene; opx, orthopyroxene; mt, magnetite; ilm, ilmenite; ol, olivine; spl, spinel; ap, apatite; zir, zircon; bt, biotite.
¢þAppendix 3¡¡¡¡Equations used for modeling. The following equations of Allègre and Minster (1978) have been used for the Rayleigh fractional crystallization model:
Cliq = C0FDi–1 and Ccum = C0(1 – FDi)/(1 – F),
where Cliq is weight concentration in the residual liquid, Ccum is weight concentration in the cumulate F is fraction of residual liquid, C0 is weight concentration in the parental liquid and Di is bulk partition coefficient of crystallizing assemblage for the element. Partition coefficients for basalte and basaltic andesite liquid (Appendix 2) were applied for the modeling of first-stage Yakuno rocks (Figs. 10 and 11), and those for the dacite and rhyolite liquids were applied for the modeling of second-stage Yakuno rocks (Figs. 15 and 17).
The following equation of Shaw (1970) has been used for the equilibrium batch melting model:
CMelt/Ci = 1/(DRS + F(1 – DRS) )
where CMelt is weight concentration in the partial melt, F is fraction of partial melt produced, Ci is weight concentration in the original unmelted solid (i.e. source) and DRS is bulk partition coefficient of the element in the original solid. Partition coefficients for andesite liquid (Appendix 2) were applied for the modeling of partial melting of first-stage Yakuno rocks (Fig. 16).
¢þAppendix 4¡¡¡¡Compositions of source (starting material) and partial melts (in wt. %), and modes of run products (in %) for the dehydration melting experiment by Beard and Lofgren (1991).
ÏÀÀ⡧ÂçºåÂÏÀÑËßÃϤˤª¤±¤ëÃæÉô¹¹¿·Åý¤Î²ÖÊ´À¸Áؽø¤È¸Å´Ä¶ÊÑÁ«
Ëܶ¿Èþº´½ï
(vol.115, no.2¡¡p.64-79.)
¢þAppendix 1.¡¡ Correlation of sample numbers with depth in core and sediment type. Pollen extraction procedures (A and B) are explained in the text.
¢þAppendix 2.¡¡ Composition of pollen and spores included in each sample. Each pollen frequency (%) is based on total sum of pollen of trees and shrubs.
ÏÀÀ⡧²þÄû¡ÖÆüËÜÎóÅ糤Äìë·Ï¿Þ¡×—³¤Äìë¤ÎÃÏ·ÁŪÆÃħ¤ÈÌäÂêÅÀ—
Å輡¡À¶
(vol.114, no.11¡¡p.560-576)
¢þÂè1¿Þa(JPEG)¡¡ÆüËÜÎóÅ糤Äìë·Ï¿Þ—Ë̳¤Æ»²—.¡¡ÃÏ̾¤Ï³¤Äìë¤Î̾¾Î¤ò¼¨¤¹¡£1¡§³¤Ëß¡¦±úÃÏ¡¢2¡§³¤ËßÄì¡ÊÈ濼50m°Ê²¼¡Ë¡Ê°Ê²¼¡¢Æ±¡Ë
¢þÂè1¿Þb(JPEG)¡¡ÆüËÜÎóÅ糤Äìë·Ï¿Þ—ÅìËÌÆüËܲ—.¡¡TDSC¡§ÉÙ»³¿¼³¤¥Á¥ã¥Í¥ë
¢þÂè1¿Þc(JPEG)¡¡ÆüËÜÎóÅ糤Äìë·Ï¿Þ—´ØÅ졦ÃæÉô¡¦¶áµ¦²—.¡¡
AG¡§°Â¾è¸ý³¤Äìë¡¢AH¡§Àõ±©³¤Äìë¡¢AT¡§°¤ÅÄϳ¤Äìë¡¢DT¡§ÂçÅ쳤Äìë¡¢GK¡§¸Þ¥ö½ê³¤Äìë¡¢HM¡§É;¾³¤Äìë¡¢HO¡§ÉͲ¬³¤Äìë¡¢J¡§¾ë¥öÅ糤Äìë¡¢KM¡§ÌÚËܳ¤Äìë¡¢KS¡§¿ÀÁ°¡Ê¤«¤ß¤µ¤¡Ë³¤Äìë¡¢KO¡§ËÌÈøÏɳ¤Äìë¡¢KT¡§¾¡±º³¤Äìë¡¢KZ¡§¸ÅºÂ³¤Äìë¡¢MR¡§ÉÛÎɡʤá¤é¡Ë³¤Äìë¡¢MS¡§Éñºä¸ý³¤Äìë¡¢NDSC¡§Æ¿¼³¤¥Á¥ã¥Í¥ë¡¢NG¡§Ä¹Å糤Äìë¡¢NJ¡§¿·Å糤Äìë¡¢OM¡§Âç¼¼³¤Äìë¡¢OW¡§ÈøÏɳ¤Äìë¡¢OY¡§Â绳²³¤Äìë¡¢RY¡§ÎµÍγ¤Äìë¡¢SDSC¡§Ä¬Ì¨¿¼³¤¥Á¥ã¥Í¥ë¡¢SG¡§¿·µÜ³¤Äìë¡¢SM¡§»ÖË೤Äìë¡¢SN¡§º´ÌÄìë¡¢TJ¡§ÂÀÃϳ¤Äìë¡¢TM¡§¹â¾¾³¤Äìë¡¢UK¡§±§µ×°æ³¤Äìë
¢þÂè1¿Þd(JPEG)¡¡ÆüËÜÎóÅ糤Äìë·Ï¿Þ—Ãæ¹ñ¡¦»Í¹ñ¡¦¶å½£²—
AG¡§°Â¾è¸ý³¤Äìë¡¢AH¡§Àõ±©³¤Äìë¡¢AT¡§°¤ÅÄϳ¤Äìë¡¢DT¡§ÂçÅ쳤Äìë¡¢GK¡§¸Þ¥ö½ê³¤Äìë¡¢HM¡§É;¾³¤Äìë¡¢HO¡§ÉͲ¬³¤Äìë¡¢KM¡§ÌÚËܳ¤Äìë¡¢KS¡§¿ÀÁ°¡Ê¤«¤ß¤µ¤¡Ë³¤Äìë¡¢KO¡§ËÌÈøÏɳ¤Äìë¡¢KZ¡§¸ÅºÂ³¤Äìë¡¢MS¡§Éñºä¸ý³¤Äìë¡¢NG¡§Ä¹Å糤Äìë¡¢OW¡§ÈøÏɳ¤Äìë¡¢OY¡§Â绳²³¤Äìë¡¢RY¡§ÎµÍγ¤Äìë¡¢SDSC¡§Ä¬Ì¨¿¼³¤¥Á¥ã¥Í¥ë¡¢SG¡§¿·µÜ³¤Äìë¡¢SM¡§»ÖË೤Äìë¡¢SN¡§º´ÌÄìë¡¢TJ¡§ÂÀÃϳ¤Äìë¡¢TM¡§¹â¾¾³¤Äìë¡¢UK¡§±§µ×°æ³¤Äìë¡¢Oki1¡ÁOki4¡§²¥ÎÅç²1¡Á4³¤Äìë¡¢ÃÏ̾¤Î¸å¤ÎG¤Ï³¤Äìë·²¤ò°ÕÌ£¤¹¤ë¡£
Êó¹ð¡§¾®ÃÇÁؤ«¤é¿äÄꤵ¤ì¤¿¹Û¾²ÃÏ°è¤Î¸Å±þÎÏ¡§¼¯»ùÅ縩±ÊÌîÃÏ°è¤ÎÎã
°úÃϸ¶Ì»³Ï©¡¡ÆØ
(vol.114, no.10¡¡p.540-545)
¢þÉÕÏ¿Âè1ɽ¡¥±ÊÌîÃϰ褫¤éÆÀ¤é¤ì¤¿ÃÇÁØ¥¹¥ê¥Ã¥×¥Ç¡¼¥¿¡¥»¤º¯¤ÎÊý¸þ¤Ï¡¤»³Ï©¡¦Â縶(2001)¤Î½ñ¼°¤ÇµºÜ¡¥»¤º¯¤ÎÊý¸þ¤Þ¤¿¤ÏÊÑ°Ì¥»¥ó¥¹¤¬¶õÍó¤Î¹Ô¤Ï¡¤ÉÔ´°Á´¥Ç¡¼¥¿¡¥¡ÊPDFÈÇ¡Ë
¢þÉÕÏ¿Âè1¿Þ¡¥±ÊÌîÃÏ°è¤Î¥ë¡¼¥È¥Þ¥Ã¥×¡¥ÃÇÁØ¥¹¥ê¥Ã¥×¥Ç¡¼¥¿¼èÆÀÃÏÅÀ¤¬¡¤NL1¤Î¤è¤¦¤Ë¥¢¥ë¥Õ¥¡¥Ù¥Ã¥È2ʸ»ú¤È¿ô»ú¤È¤Çɽ¤µ¤ì¤Æ¤¤¤ë¡¥ÃÇÁإǡ¼¥¿¤ÏÉÕÏ¿Âè1ɽ¡¥¹ñÅÚÃÏÍý±¡È¯¹Ô2Ëü5Àéʬ¤Î1ÃÏ·Á¿Þ¡Ö»§Ëà¹õÌڡס¤¡Ö·ªÌî¡×¡¤¡Ö±ÊÌî¡×¡¤¡Ö²£Àî¡×¤ò»ÈÍÑ¡¥¡ÊPDFÈÇ¡Ë
ÏÀÀ⡧°µ½ÌÀ¥¹¥Æ¥Ã¥×¤Ë¤ª¤±¤ëÇ˺ÕÂӤι½Â¤−´ôÉ츩ÈôÂͻԤÎÀ×ÄÅÀîÃÇÁØÀ¾Éô¤ÎÎã−
ð±©ÀµÏ¡¦ÅçÅĹ̻ˡ¦¹õß·±Ñ¼ù¡¦»°ÎØÆØ»Ö
(vol.114, no.10¡¡p.495-515)
¢þÉÕÏ¿Fig. 1. ¡¡Typical X-ray diffraction patterns of smear slides for the <2 μm size fractions of the fault clays. An upper pattern of each figure is treated with ethylene-glycol. cal: calcite, chl: chlorite, ill: illite, kln: kaolinite, py: pyrite, qtz: quartz, sc: smectite, sd: siderite.¡ÊPDFÈÇ¡Ë
ÏÀÀ⡧µª°ËȾÅçËÌÉô¤Î¼¼À¸²ÐºÕήÂÏÀÑʪ¤È¼þÊÕ¤ËʬÉÛ¤¹¤ë¶Å³¥´ä¤ÎÂÐÈ椪¤è¤Ó¤½¤ì¤é¤Îµë¸»¡§·Ú¹Ûʪ¶þÀÞΨ¤òÍѤ¤¤¿¥â¡¼¥ÉʬÀϤˤè¤ë¥¢¥×¥í¡¼¥Á
»³²¼¡¡Æ©¡¦Ãɸ¶¡¡Å°¡¦´äÌî±Ñ¼ù¡¦À±¡¡Ç¡¦Àî¾å¡¡Íµ¡¦³Ñ°æÄ«¾¼¡¦¿·ÀµÍµ¾°¡¦ÏÂÅľ÷δ
(vol.113, no.7¡¡p.340-352)
¢þÉÕÏ¿Âè1¿Þ¡¡¡¡µª°ËȾÅç¤ËʬÉÛ¤¹¤ëÃæ´üÃæ¿·À¤·¾Ä¹¼Á²ÐÀ®´äÎफ¤éºÎ¼è¤·¤¿96»îÎÁ¤ÎÁ´¹Ûʪ¡¤½Å¹Ûʪ¡¤·Ú¹ÛʪÁȹ礻¥â¡¼¥ÉʬÀÏ·ë²Ì¤È¡¤·Ú¹Ûʪ¤È²Ð»³¥¬¥é¥¹¤Î¶þÀÞΨÉÑÅÙʬÉÛ¡¥·Ú¹ÛʪÁȹ礻¥â¡¼¥ÉʬÀÏ·ë²Ì¤Ï¶þÀÞΨÈϰϤò4¤Ä¤Ëʬ³ä¤·¡¤Äã¶þÀÞΨ¦¤«¤é¥«¥êĹÀС¦Äã¶þÀÞΨ¼ÐĹÀÐ(¥¢¥ë¥Ð¥¤¥È¡Á¥ª¥ê¥´¥¯¥ì¡¼¥¹)¡¦Àбѡ¦¹â¶þÀÞΨ¼ÐĹÀÐ(¥¢¥ó¥Ç¥·¥ó¡Á¥¢¥Î¡¼¥µ¥¤¥È)¤È¤·¤Æɽ¤·¤¿¡¥¡ÊPDFÈÇ¡Ë
¢þÉÕÏ¿Âè2¿Þ¡¡¡¡Ëܸ¦µæ¤ÇÍѤ¤¤¿96»îÎÁ¤Î»îÎÁºÎ¼èÃÏÅÀ¡¥»îÎÁ̾¤ÏÄÌÈÖ+»îÎÁµ¹æ¤Çɽ¤·¡¤»ÈÍѤ·¤¿1/25000ÃÏ·Á¿Þ̾¤â¤½¤ì¤¾¤ì¼¨¤·¤¿¡¥¡ÊPDFÈÇ¡Ë
¢þÉÕÏ¿Âè3¿Þ¡¡¡¡¼¼À¸²ÐºÕήÂÏÀÑʪ»îÎÁ¤òºÎ¼è¤·¤¿É´¡¹¥ë¡¼¥È¤Èζ¸ý¥ë¡¼¥È¤Î¥ë¡¼¥È¥Þ¥Ã¥×¡¥¡ÊPDFÈÇ¡Ë
ÏÀÀ⡧¼¯»ùÅ縩Ȭ½Å»³ÃÏ°è¤ÎÃϼÁ¤ÈÁ¯¿·Åý·´»³ÁؤÎÁذ̳ØŪ¸¦µæ
Æ⼸øÂ硦ÂçÌÚ¸øɧ¡¦¸Åß·¡¡ÌÀ¡¡ (vol.113, no.3 p.95-112.)
¢þ¥ª¡¼¥×¥ó¥Õ¥¡¥¤¥ëÂè1ɽ¡¡·¾Áô²½Àлº½Ð°ìÍ÷ɽ¡¡¡ÊPDFÈÇ¡Ë
ÏÀÀ⡧Æü¹âÊÑÀ®ÂÓ¼çÂÓ¤ËʬÉÛ¤¹¤ë¹âÊÑÀ®ÅÙ³ÑÁ®´äÎà¤Î¸¶´ä¿äÄꤪ¤è¤ÓËÌÉôÆü¹âÂÓÎп§´äÎà¤È¤ÎÈæ³Ó
ÀîϲÀ»»Ö¡¦ÃæÌî¿É§¡¦¾®»³Æ⹯¿Í¡¦²Ã¡¹Èþ´²Íº¡¦ÂçÏÂÅÄÀµÌÀ¡¡¡Êvol.112, no.11¡¡p.639-653¡¨Æý¸¹æ¡ÖÆü¹â¾×ÆÍÂÓ¸¦µæ¤ÎºÇ¶á¤Î¿ÊÊâ¡×¡Ë
¢þAppendix 1. Bulk chemical compositions of amphibolites and greenstones
Fe2O3*; total Fe as Fe2O3. FeO**; total Fe as FeO. LOI; loss on ignition. XMg=Mg/(Mg+Fe). n.d.; not determined. n.a.; not analyzed.
CHMB: central area of the Hidaka metamorphic Belt, nSHMB: Northern part of southern area of the Hidaka metamorphic Belt, sSHMB: southern part of southern area of the Hidaka metamorphic Belt, Sk: Shimokawa area, Tm: Tomuraushi area, Np: Nipesotsu area, Ot: Okutokachi area, Oc: Ochiai area. SH: Shunbetsu river, KB: Koibokushushibichari river, NNC: Nanashino-sawa river, OG: Ogawara-zawa river, BK: Benikaru-zawa river, SS: Sasshibichari river, NO: Nishuomanai-zawa river, SM: Soematsu-zawa river, HB: Hidakahorobetsu river, SG: Sogabetsu river, MM: Menashuman river, NOB: Niobetsu river, SC: Shirochinomi river, MS: Menashunbetsu river, MK: Mukorobetsu river, PN: Panke river, SN: Shinnosukeshunbetsu river, MKT: Mikitonai river, MKI: Mikiinai river, MN: Menashiesanbetsu river, ON: Onarushibe river, FC: Fuchimi river, RB: Rubeshibe river, NK: Nikanbetsu river, ST: Shiitokachi river, NU: Nupun-Tomuraushi river, NP: Nipesotsu river, OA: Ochiaino-sawa river, SI: Shiisopurachi river, UC: Uchino-sawa river, KN: Kanano-sawa river, TM: Tomamu river.
¢þAppendix 2. REE compositions of amphibolites
Abbreviations are same to those in Appendix 1.
ÁíÀ⡧ÁÈÀ®¥Ç¡¼¥¿²òÀϤˤª¤±¤ë0Ãͤª¤è¤Ó·ç»Ãͤΰ·¤¤¤Ë¤Ä¤¤¤Æ
¿·°æ¹¨²Å¡¦ÂÀÅÄ¡¡µü¡Êvol.112, no.7¡¡p.439-451)
ÉÕÏ¿1¡¡´Ý¤á¸íº¹¤Ë¤è¤ë0ÃͤòÃÖ´¹¤¹¤ë¥×¥í¥°¥é¥à¤Î¥½¡¼¥¹¥³¡¼¥É¡¥
PDFÈÇ
textÈÇ
ÉÕÏ¿2¡¡ÉÔŬ¹çÅÙ¤ò·×»»¤¹¤ë¥×¥í¥°¥é¥à¤Î¥½¡¼¥¹¥³¡¼¥É¡¥
PDFÈÇ
textÈÇ
¥Î¡¼¥È¡§ÂпôÈæË¡¤Ë¤ª¤±¤ëµ¬³Ê²½À®Ê¬ÁªÄê¥×¥í¥°¥é¥à—Woronow-Love-SchedlË¡¤Î¼«Æ°²½—
¿·°æ¹¨²Å¡¦ÂÀÅÄ¡¡µü¡Êvol.112, no.6¡¡p.430-435¡Ë
¡ûÉÕÏ¿¡¥Woronow-Love-SchedlË¡¤ò¼Â¹Ô¤¹¤ëRÍÑ¥×¥í¥°¥é¥à¥³¡¼¥É¡¥
PDFÈÇ
textÈÇ
ǽÅÐȾÅçÎØÅçÃÏ°è¤ÎÃæ¿·Åý¤ÎÁؽø¡¦ÂÏÀѴĶ¡¦¥Æ¥¯¥È¥Ë¥¯¥¹
¾®ÎÓÇîʸ¡¦»³Ï©¡¡ÆØ¡¦ÁýÅÄÉÙ»Îͺ¡Êvol.111, no.5¡¡p.000-000)
¡ûÂè1ɽ¡¥
·¾Áô²½ÀХꥹ¥È¡¥Êݸ¾õ¶·¡§G, Îɹ¥¡¨VP, ¶Ë¤á¤ÆÉÔÎÉ¡¥´ÞÍÎÌ¡§A, ¿»º¡¨PD, ·¾ÁôÉÏ»º½Ð¡¥Â¸ÈÝ¡§+, ¸ºß¡¨−, ÉԺߡ¥
ÁÈÀ®ÎßÂÓ¥¯¥í¥à¥¹¥Ô¥Í¥ë¤«¤é¤ß¤¿Àij¤¼ØÌæ´ä¥á¥é¥ó¥¸¥å¤ò¹½À®¤¹¤ë¼ØÌæ´ä¤Îµ¯¸»
ÄÔ¿¹¡¡¼ù¡Êvol.110, no.10¡§Æý¸¡¡ÈôÂͳ°±ïÂÓ¸¦µæ¤Î¿ÊŸ¤ÈŸ˾¡¡p591-597)
¡ûFig.2 Colored version
Microtexture of chromitite (BOM-03a) and serpentinite (BOM-03b). (A) Photomicrograph of the occurrence of zoned Cr-spinel in chromitite [Plane polarized light = PPL]. (B) Photomicrograph of enlarged view of the inclusion-rich in zoned Cr-spinel in chromitite [PPL]. (C) X-ray image of Fe (Kα) of Cr-spinel grain of (B). (D) X-ray image of Mg (Kα) of (C). (E) X-ray image of Ti (Kα) of (C). (F) X-ray image of Na (Kα) of (C), showing distribution of pargasitic amphibole inclusions. (G) Photomicrograph of the occurrence of zoned Cr-spinel in serpentinite [PPL]. (H) Back-scattered electron image of the zoned Cr-spinel in serpentinite. Scale bars on each image represent 1 mm. Abbreviations: CrSp = Cr-spinel, Atg = antigorite, Mgs = magnesite.
¹â¶¶¹§»°¡¦»³²¼¿Î»Ê¡¤2004¡¤¥é¥Ë¡¼¥Ë¥ã»þ¤Î¥ì¥Ç¥£¥ª¥é¥ê¥¢¥Õ¥é¥Ã¥¯¥¹¡§1999ǯÂÀÊ¿ÍÎÀÖÆ»°èÀ¾Éô¡¦ÃæÉô¤Ë¤ª¤±¤ë»þ·ÏÎóÊÑÆ°¤È³¤ÍδĶ¡¥¡Êvol.110, no.8 p463-479)
¡ûOpen File Table 1.
Lists of the sampled dates and intervals, fluxes of total Radiolaria and their three subgroups (Nassellaria, Spumellaria, Phaeodaria), and diversity indices.
¡ûOpen File Table 2.
Radiolarian species counts (No. shells per microslide) at Shallow and Deep sediment trap depths at Sites MT1, MT2, MT3, and MT5.
¡ûOpen File Table 3.
Radiolarian species fluxes (No. shells m-2 d-1) at Shallow and Deep sediment traps deployed at Sites MT1, MT2, MT3, and MT5 during January-December 1999 in the western and central equatorial Pacific.
¡ûOpen File Table 4.
Radiolarian species count data obtained from core tops (0-0.5 cm) of the multiple cores recovered at four sediment trap sites.
Ritsuo Nomura,2003, Assessing the roles of artificial vs. natural impacts on brackish lake environments: foraminiferal evidence from Lake Nakaumi, southwest Japan.¡Êvol.109, no.4 £ð197-214¡Ë
¡ûAppendix 1. Quantitative data set for factor analysis and the varimax factor score matrix
¡ûAppendix 2. Calculated ages of each sample.
The dotted lines indicate the marked depth and year, which are referred to the construction activities.
¡ûAppendix 3. Communality and factor loadings.
Ritsuo Nomura and Koji Seto, 2002, Influence of man-made construction on environmental conditions in brackish Lake Nakaumi,southwest Japan:Foraminiferal evidence.¡Êvol.108, no.6 p394-409¡Ë
¡ûAppendix 1: Foraminiferal species identified in this study.(PDF/16KB)
¡ûAppendix 2: Foraminiferal occurrence at H-1.(PDF/10KB)
¡ûAppendix 3: Foraminiferal occurrence at H-2.(PDF/12KB)