Area	Locality	Latitude	Longitude
Omogo	Omogo1	33°42′56.5″N	133°01′22.8″E
	Omogo2	33°44′22.8″N	133°02′17.1″E
	Omogo3	33°43′56.3″N	133°01′15.2″E
Namekawa	Namekawa1	33°46′07.3″N	133°00'41.3"E
	Namekawa2	33°46′20.7″N	133°00'20.8"E
Nimyo	Nimyo	33°39′22.8″N	132°50′29.3″E
Tobe	Shojiyama	33°42′48.1″N	132°45′44.2″E
	Choshi dam	33°41′31.8″N	132°47′39.3″E
	Tamatani	33°40′13.1″N	132°47′41.3″E
	Kozuchinomine	33°39′39.9″N	132°49′31.2″E
	Kozaru	33°38′39.0″N	132°48′33.8″E

Table S1. Sampling localities. See also Fig. 2.

Table S2. Composition of gravels in conglomerate beds of the Myojin Formation based on counting selected clasts > 3 cm in diameter within a randomly set 10×10 m square on the surface of each exposed bed. See Fig. 2 and Table S1 for outcrop locations. Abbreviations: Cgl, conglomerates; Grntd, granitoids; Hor, hornfels; Hpb, hypabyssal rocks; Mst, mudstones; n, total number of clasts; Qtz, quartz; Sch, schists; Sst, sandstones; and Volc, volcanic rocks. Note that – indicates that no gravel of that type were counted at the bed.

Locality	Mst	Sst	Cgl	Grntd	Hpb	Volc	Sch	Qtz	Hor	n
Omogo1	7	36	-	33	27	-	2	-	-	105
Omogo2	5	37	-	50	42	-	6	1	-	141
Omogo3	4	61	-	26	22	-	-	3	-	116
Namekawa1	14	46	1	55	24	-	-	-	-	140
Namekawa2	17	48	-	32	16	-	1	-	2	116
Nimyo	3	97	6	58	4	-	6	-	2	176
Shojiyama	15	29	2	50	6	-	-	1	1	104
Choshi dam	12	55	4	20	-	-	1	1	7	100
Tamatani	-	81	2	6	-	1	12	-	-	102
Kozuchinomine	8	71	4	25	1	-	2	-	2	113
Kozaru	2	90	2	3	_	3	9	2	3	114

Table S3. Composition of igneous rock gravels collected from the Myojin Formation. The numbers in parentheses indicate the number of samples from boulder-sized gravels. See Fig. 2 and Table S1 for sample locations. Abbreviations: Gr, granite; Grd, granodiorite; Hpb, hypabyssal rocks; Qmd, quartz monzodiorite; Qmz, quartz monzonite; Rhy, rhyolite; and Tnl, tonalite. Note that – indicates that no gravels of that type were collected from the locality.

Locality	Gr	Grd	Tnl	Qmz	Qmd	Hpb	Rhy	n
Omogo1	5(1)	3(1)	_	-	-	5 (2)	_	13 (4)
Omogo2	4	_	_	_	_	5 (2)	_	9 (2)
Omogo3	2	3	1	_	_	1	_	7
Namekawa1	11(1)	8	_	_	1	4 (2)	_	24 (3)
Namekawa2	4	4	_	_	_	5	_	13
Nimyo	7(1)	1(1)	_	1	1	_	_	10(2)
Shojiyama	2	_	_	_	_	1	_	3
Choshi dam	1(1)	_	_	_	_	_	_	1(1)
Tamatani	5(1)	_	_	_	_	_	1	6(1)
Kozuchinomine	5	_	_	_	_	_	_	5
Kozaru	1	1	-	-	-	-	1	3
Total	47 (5)	20 (2)	1	1	2	21 (6)	2	94 (13)

Table S4. Whole rock chemical composition of gravels collected from the Myojin Formation measured by X-ray fluorescence anal-
yses. Sampling localities (see Fig. 2 and Table S1): omg1, Omogo1; omg2, Omogo2; omg3, Omogo3; nam1, Namekawa1; nam2,
Namekawa2; and nmo, Nimyo. Note that – indicates below detection limit.

Sample	OMG6	OMG18	OMG20	OMG32	NAM27	NAM29	NAM37	OMG4	OMG5	OMG13	
Locality	omg1	omg2	omg2	omg1	nam1	nam1	nam1	omg1	omg1	omg2	
Rock			Hypaby	ssal rock			Granite				
(wt%)											
SiO ₂	75.52	75.39	76.34	74.07	76.27	76.26	75.39	76.27	74.63	70.24	
TiO ₂	0.07	0.10	0.08	0.14	0.04	0.08	0.10	0.11	0.11	0.32	
Al_2O_3	13.12	13.54	12.62	13.92	12.93	13.37	13.46	13.07	14.28	15.35	
FeO _{total}	1.06	1.57	1.38	2.00	0.55	0.83	0.59	1.06	1.19	2.15	
MnO	0.02	0.03	0.03	0.03	0.01	0.02	0.01	0.02	0.02	0.05	
MgO	0.08	0.12	0.10	0.16	0.08	0.11	0.14	0.06	0.06	0.51	
CaO	0.71	0.91	1.06	0.34	0.52	1.06	0.81	1.10	0.78	2.00	
Na ₂ O	3.97	3.78	3.81	4.14	4.74	3.88	3.30	3.45	3.62	3.27	
K ₂ O	4.02	4.32	3.79	3.19	3.98	3.70	4.90	4.03	5.17	4.35	
P_2O_5	0.02	0.02	0.02	0.05	0.02	0.02	0.03	0.03	0.02	0.06	
TOTAL	98.58	99.78	99.23	98.03	99.13	99.33	98.73	99.17	99.88	98.30	
(ppm)											
V	7.6	6.0	3.4	8.7	7.5	3.4	7.3	8.4	7.6	22.8	
Cr	6.3	4.0	4.7	5.3	4.9	5.3	6.2	4.4	4.1	9.1	
Co	0.8	0.7	1.3	1.9	2.5	1.2	1.1	1.5	1.4	3.8	
Ni	2.3	2.2	2.2	3.1	4.3	2.7	3.4	2.9	2.9	3.8	
Cu	1.7	2.1	0.2	1.0	1.5	1.2	1.5	2.3	1.6	1.0	
Zn	32.6	56.4	43.2	36.9	15.8	36.6	18.8	32.5	38.1	44.7	
Rb	127.8	141.3	117.5	119.4	142.0	104.2	226.5	113.6	154.6	137.4	
Sr	98.2	86.2	99.7	124.5	57.3	98.9	68.9	119.7	104.5	189.0	
Y	27.7	31.7	27.5	29.6	18.8	28.3	28.5	12.7	16.4	20.3	
Zr	90.2	154.7	96.5	108.8	68.5	98.2	60.4	98.9	129.9	103.4	
Nb	8.3	10.5	8.2	9.5	6.7	8.0	7.2	6.1	7.6	8.2	
Pb	19.6	23.9	22.4	4.5	14.0	22.0	26.7	19.4	22.1	24.4	
Th	18.8	16.5	10.6	10.6	10.7	10.0	13.3	13.5	10.8	5.1	
ASI*	1.08	1.08	1.03	1.29	0.99	1.09	1.11	1.09	1.11	1.13	

* Alumina saturation index

Sample	OMG15	NAM28	NMO2	NMO7	OMG8	OMG11	OMG37	NAM13	NMO11	NAM25
Locality	omg2	nam1	nmo	nmo	omg3	omg2	omg3	nam2	nmo	nam1
Rock	8_	Granite					Granodiori	te		Omd**
(wt %)										<u></u>
SiO ₂	74.24	75.65	75.69	73.79	65.60	73.60	68.25	75.48	71.14	65.51
TiO ₂	0.12	0.04	0.13	0.18	0.36	0.21	0.54	0.11	0.33	0.19
Al_2O_3	13.90	13.10	13.22	13.95	16.94	13.91	16.18	14.10	14.20	17.96
FeO _{total}	1.37	0.27	1.30	1.43	2.84	1.95	3.81	0.82	2.22	1.44
MnO	0.03	0.01	0.03	0.04	0.04	0.04	0.05	0.02	0.05	0.03
MgO	0.21	0.06	0.20	0.32	0.36	0.38	0.74	0.05	0.67	0.32
CaO	1.12	0.86	0.95	1.27	2.59	1.19	2.67	0.63	2.11	0.77
Na ₂ O	3.15	3.39	3.16	3.19	4.42	3.31	3.83	4.14	2.87	7.01
K ₂ O	5.18	4.82	4.95	4.70	2.62	4.69	2.05	3.43	3.96	4.62
P_2O_5	0.04	0.02	0.03	0.05	0.09	0.05	0.12	0.04	0.08	0.06
TOTAL	99.35	98.21	99.65	98.93	95.85	99.31	98.24	98.81	97.60	97.90
(ppm)										
V	6.1	4.7	10.6	13.1	14.2	14.1	29.6	6.2	26.6	10.0
Cr	5.1	5.5	5.6	6.1	6.0	4.6	8.1	6.6	7.3	7.0
Co	0.8	-	2.4	2.8	4.4	2.8	7.9	1.5	5.6	4.4
Ni	3.2	2.6	4.2	4.1	2.1	2.6	2.8	3.2	6.3	5.2
Cu	0.9	1.6	2.9	0.9	5.6	4.2	2.5	1.3	2.7	0.5
Zn	39.9	15.3	26.5	28.8	73.8	50.6	73.8	26.8	43.9	28.9
Rb	206.3	146.8	180.8	205.6	76.7	149.4	75.6	103.1	152.2	172.8
Sr	107.6	78.6	85.2	91.0	267.0	121.6	205.2	135.0	141.8	116.6
Y	21.4	17.4	22.5	23.6	20.9	17.7	17.5	15.0	20.6	31.7
Zr	105.9	53.6	85.6	79.9	354.5	105.5	229.2	85.9	88.4	120.6
Nb	12.6	5.5	7.5	8.9	10.3	8.5	12.3	6.3	8.0	9.4
Pb	31.6	33.1	25.6	29.8	14.5	25.7	11.2	19.9	25.3	18.8
Th	22.2	17.1	16.8	15.9	19.5	16.2	12.4	7.5	16.5	14.0
ASI*	1.09	1.06	1.08	1.11	1.16	1.11	1.24	1.22	1.12	1.01

Table S4. Continued.

* Alumina saturation index

** Quartz monzodiorite

Casia	Smot	Isotopic	e ratios	²³⁸ U- ²⁰⁶ Pb*	ages (Ma)	Remarks	
Grain	Spot	²³⁸ U/ ²⁰⁶ Pb*	²⁰⁷ Pb*/ ²⁰⁶ Pb*	(1)	(2)	Remarks	
OMG	6 (from	Omogo1)					
1		$69.57 \ \pm \ 1.52$	$0.0458~\pm~0.0053$	$92.2~\pm~2.0$	$92.0~\pm~2.0$		
2		$70.08 ~\pm~ 1.68$	$0.0476~\pm~0.0048$	$91.4~\pm~2.2$	$91.3~\pm~2.2$		
3		$68.77 \ \pm \ 1.49$	$0.0442~\pm~0.0027$	$93.1~\pm~2.0$	$93.1~\pm~2.0$		
4		$67.98 ~\pm~ 1.82$	$0.0493\ \pm\ 0.0060$	$94.0~\pm~2.5$	$94.1~\pm~2.5$		
5		$71.02 \ \pm \ 1.19$	$0.0492\ \pm\ 0.0019$	$90.0~\pm~1.5$	$90.1~\pm~1.5$		
6		72.53 ± 1.51	$0.0476~\pm~0.0025$	$88.3~\pm~1.8$	$88.3~\pm~1.8$		
7		$67.72 \ \pm \ 1.33$	$0.0527~\pm~0.0026$	$93.9~\pm~1.9$	$94.5~\pm~1.8$		
8		$74.65 ~\pm~ 1.64$	$0.0448~\pm~0.0069$	$86.1~\pm~1.8$	$85.8~\pm~1.9$		
9		$72.40 ~\pm~ 1.63$	$0.0403\ \pm\ 0.0056$	$88.6~\pm~1.9$	$88.4~\pm~2.0$		
10		$65.34 \ \pm \ 1.39$	$0.0515~\pm~0.0024$	$97.5~\pm~2.1$	$97.9~\pm~2.1$	$excluded^{\dagger}$	
11		$65.01 \ \pm \ 1.74$	$0.0433\ \pm\ 0.0057$	$98.9~\pm~2.6$	$98.4~\pm~2.6$	excluded [†]	
12		71.08 ± 1.39	$0.0485\ \pm\ 0.0038$	$90.0~\pm~1.7$	$90.1~\pm~1.7$		
13		68.28 ± 1.52	$0.0452\ \pm\ 0.0029$	$93.7~\pm~2.1$	$93.7~\pm~2.1$		
14		69.76 ± 1.42	$0.0438\ \pm\ 0.0050$	$92.2~\pm~1.9$	$91.8~\pm~1.9$		
15		74.33 ± 1.33	$0.0483\ \pm\ 0.0041$	$86.1~\pm~1.5$	$86.1~\pm~1.5$		
16		70.30 ± 1.25	0.0488 ± 0.0052	$90.9~\pm~1.6$	91.1 ± 1.6		
17		72.06 ± 1.34	0.0483 ± 0.0029	$88.8~\pm~1.7$	$88.8~\pm~1.6$		
18		71.53 ± 1.25	0.0496 ± 0.0026	$89.3~\pm~1.6$	$89.5~\pm~1.6$		
19		70.13 ± 1.58	0.0471 ± 0.0060	91.3 ± 2.0	$91.3~\pm~2.0$		
20		69.86 ± 1.54	0.0441 ± 0.0030	91.6 ± 2.0	91.6 ± 2.0		
21	1	72.22 ± 1.33	0.0541 ± 0.0027	87.9 ± 1.6	$88.6~\pm~1.6$	rim	
	2	72.71 ± 1.22	0.0433 ± 0.0043	88.3 ± 1.4	88.1 ± 1.5	core	
23		71.36 ± 1.36	0.0482 ± 0.0028	89.7 ± 1.7	89.7 ± 1.7		
24		73.93 ± 1.54	0.0470 ± 0.0050	86.7 ± 1.8	86.6 ± 1.8		
		Weighted mean	age (n = 22; 95% CI):	89.8 ± 1.0 Ma (N	(ISWD = 1.8)		
OMG	11 (fron	n Omogo2)					
1		64.96 ± 1.09	$0.0467\ \pm\ 0.0029$	$98.6~\pm~1.6$	$98.5~\pm~1.6$		
2		65.23 ± 1.11	$0.0475~\pm~0.0016$	$98.1~\pm~1.7$	$98.1~\pm~1.7$		
3		64.41 ± 1.30	$0.0489\ \pm\ 0.0023$	$99.2~\pm~2.0$	$99.3~\pm~2.0$		
4		65.52 ± 1.16	$0.0465~\pm~0.0022$	$97.6~\pm~1.7$	$97.6~\pm~1.7$		
5		$64.46\ \pm\ 0.97$	$0.0467\ \pm\ 0.0015$	$99.2~\pm~1.5$	$99.2~\pm~1.5$		
6		68.41 ± 1.41	$0.0440\ \pm\ 0.0046$	$94.0~\pm~1.9$	$93.5~\pm~1.9$		
7		63.95 ± 1.13	$0.0493\ \pm\ 0.0024$	$99.9~\pm~1.8$	$100.0~\pm~1.8$		
8		$64.73 \ \pm \ 0.96$	$0.0456\ \pm\ 0.0015$	$98.8~\pm~1.4$	$98.8~\pm~1.4$		
9		$65.75 \ \pm \ 0.91$	$0.0506\ \pm\ 0.0014$	$97.0~\pm~1.3$	$97.3~\pm~1.3$		
10		$69.32 \ \pm \ 0.97$	$0.0447~\pm~0.0028$	$92.6~\pm~1.3$	$92.3~\pm~1.3$		
11		68.75 ± 1.50	$0.0482\ \pm\ 0.0039$	$93.1~\pm~2.1$	$93.1~\pm~2.0$		
12		66.12 ± 0.87	$0.0481\ \pm\ 0.0045$	$96.7~\pm~1.3$	$96.8~\pm~1.3$		
13		63.93 ± 1.06	$0.0503\ \pm\ 0.0019$	$99.8~\pm~1.7$	$100.1~\pm~1.6$		
14		66.81 ± 1.00	$0.0484\ \pm\ 0.0016$	$95.7~\pm~1.4$	$95.8~\pm~1.4$		
15	1	68.25 ± 1.40	$0.0487\ \pm\ 0.0047$	$93.7~\pm~1.9$	$93.8~\pm~1.9$	rim	
	2	70.83 ± 1.61	$0.0457\ \pm\ 0.0042$	$90.6~\pm~2.0$	$90.4~\pm~2.0$	core	
16		68.20 ± 1.34	$0.0522\ \pm\ 0.0039$	$93.3~\pm~1.8$	$93.8~\pm~1.8$		
17	1	62.83 ± 1.27	$0.0472\ \pm\ 0.0017$	$101.8~\pm~2.0$	$101.8~\pm~2.0$	core, excluded [†]	
	2	69.43 ± 1.15	$0.0469\ \pm\ 0.0015$	$92.2~\pm~1.5$	$92.2~\pm~1.5$	rim	
		Weighted mean	age (n = 18; 95% CI):	96.2 \pm 1.4 Ma (N	(ISWD = 3.2)		

Table S5. U–Pb isotopic data and calculated ages for igneous rock gravels collected from the Myojin Formation. See Fig. 2 and Table S1 for sample locations. All errors are calculated at 1σ . Pb* indicates the radiogenic portions. Weighted mean ages are calculated from (1) ²⁰⁷Pb corrected ages. Abbreviations: CI, confidence interval; and MSWD, mean squared weighted deviation.

(1) Common Pb corrected by assuming ²⁰⁶Pb/²³⁸U-²⁰⁷Pb/²³⁵U age-concordance.

(2) Common Pb corrected by assuming ²⁰⁶Pb/²³⁸U-²⁰⁸Pb/²³²Th age-concordance.

 † Excluded from the calculation of the weighted mean age.

Cusin	Creat	Isotopi	c ratios	²³⁸ U- ²⁰⁶ Pb*	ages (Ma)	Remarks			
Grain	spor	²³⁸ U/ ²⁰⁶ Pb*	²⁰⁷ Pb*/ ²⁰⁶ Pb*	(1)	(2)	Kemarks			
OMG	15 (from	n Omogo2)							
1		$64.52 \ \pm \ 0.98$	$0.0481\ \pm\ 0.0035$	$99.1~\pm~1.5$	$99.1~\pm~1.5$				
2	1	$66.22~\pm~0.90$	$0.0496\ \pm\ 0.0021$	$96.4~\pm~1.3$	$96.6~\pm~1.3$	rim			
	2	67.19 ± 0.74	0.0464 ± 0.0033	$95.4~\pm~1.0$	$95.2~\pm~1.0$	core			
3		71.31 ± 1.39	0.0497 ± 0.0073	89.6 ± 1.7	89.8 ± 1.7				
4		68.49 ± 1.05	0.0506 ± 0.0033	93.1 ± 1.4	93.4 ± 1.4				
5		61.67 ± 1.05	0.0490 ± 0.0030	103.6 ± 1.8	103.7 ± 1.7				
6		63.59 ± 0.97	0.0531 ± 0.0022	100.0 ± 1.5	100.6 ± 1.5				
7		66.25 ± 0.87	0.0463 ± 0.0020	96.6 ± 1.3	96.6 ± 1.3				
8		62.10 ± 0.96	0.0484 ± 0.0062	103.0 ± 1.5	103.0 ± 1.6				
9		63.89 ± 1.33	0.0509 ± 0.0036	99.8 ± 2.1	100.1 ± 2.1				
10		61.75 ± 1.02	0.0500 ± 0.0014	103.3 ± 1.7	103.6 ± 1.7				
11		66.65 ± 0.95	0.0300 ± 0.0014 0.0471 ± 0.0015	96.0 ± 1.4	96.0 ± 1.7				
12		68.44 ± 1.01	0.0471 ± 0.0013 0.0530 ± 0.0030	90.0 ± 1.4 02.0 ± 1.4	90.0 ± 1.4 03.5 ± 1.4				
12		00.44 ± 1.01	0.0330 ± 0.0030	92.9 ± 1.4	93.3 ± 1.4				
13	1	03.22 ± 1.13	0.0490 ± 0.0023	101.0 ± 1.0	101.2 ± 1.0 07.5 + 1.2	0.040			
14	1	03.39 ± 0.91	0.0432 ± 0.0028	97.9 ± 1.3	97.3 ± 1.3	core			
	2	68.20 ± 0.93	0.0503 ± 0.0031	93.0 ± 1.3	93.8 ± 1.3	rim			
	7 (6	Weighted mean	age (n = 16 ; 95% CI):	97.0 ± 2.0 Ma (1	MSWD = 6.8)				
	27 (from	Namekawa1)	0.0401 + 0.0026	90 7 × 1 2	80.0 1 1.0				
1		71.24 ± 0.94	0.0491 ± 0.0026	89.7 ± 1.2	89.9 ± 1.2				
2		68.61 ± 1.00	0.0477 ± 0.0019	93.3 ± 1.4	93.3 ± 1.4				
3		68.56 ± 1.00	$0.04/9 \pm 0.0033$	93.3 ± 1.3	93.3 ± 1.4				
4		72.47 ± 1.04	0.0465 ± 0.0018	88.3 ± 1.3	88.3 ± 1.3				
5		71.43 ± 1.12	0.0476 ± 0.0039	89.6 ± 1.4	89.6 ± 1.4				
6		69.68 ± 1.03	0.0483 ± 0.0044	91.8 ± 1.3	91.9 ± 1.3				
7		72.39 ± 1.44	0.0465 ± 0.0034	$88.4~\pm~1.8$	$88.4~\pm~1.8$				
8		69.46 ± 0.93	0.0477 ± 0.0013	92.1 ± 1.2	92.1 ± 1.2				
9		69.02 ± 1.00	0.0460 ± 0.0015	92.7 ± 1.3	92.7 ± 1.3				
10		70.20 ± 0.87	0.0476 ± 0.0028	91.2 ± 1.1	91.2 ± 1.1				
11		$69.77~\pm~0.90$	$0.0470\ \pm\ 0.0013$	$91.7~\pm~1.2$	$91.7~\pm~1.2$				
12		$70.08~\pm~1.00$	0.0474 ± 0.0029	$91.4~\pm~1.3$	$91.3~\pm~1.3$				
13		$70.52~\pm~0.88$	0.0509 ± 0.0033	$90.4~\pm~1.1$	$90.8~\pm~1.1$				
14		73.14 ± 0.94	$0.0479\ \pm\ 0.0016$	$87.5~\pm~1.1$	$87.5~\pm~1.1$				
15		$71.15\ \pm\ 1.19$	$0.0456~\pm~0.0025$	$90.0~\pm~1.5$	$90.0~\pm~1.5$				
16		$71.30\ \pm\ 0.98$	$0.0492\ \pm\ 0.0018$	$89.6~\pm~1.2$	$89.8~\pm~1.2$				
17		$68.56 \ \pm \ 0.93$	$0.0460\ \pm\ 0.0036$	$93.6~\pm~1.2$	$93.4~\pm~1.3$				
18		$71.63\ \pm\ 0.93$	$0.0499~\pm~0.0016$	$89.1~\pm~1.2$	$89.4~\pm~1.2$				
19		$70.92~\pm~0.85$	$0.0501\ \pm\ 0.0026$	$90.0~\pm~1.1$	$90.3~\pm~1.1$				
		Weighted mean	age (n = 19; 95% CI):	90.7 ± 0.9 Ma (M	MSWD = 2.0)				
NAM2	28 (from	Namekawa1)							
1	1	67.14 ± 0.72	$0.0514\ \pm\ 0.0023$	$94.9~\pm~1.0$	$95.3~\pm~1.0$	rim			
	2	65.15 ± 0.93	$0.0475\ \pm\ 0.0017$	$98.2~\pm~1.4$	$98.2~\pm~1.4$	core			
2	1	68.65 ± 0.77	0.0478 ± 0.0011	$93.2~\pm~1.0$	$93.2~\pm~1.0$	core			
	2	68.00 ± 0.82	0.0483 ± 0.0015	94.1 ± 1.1	94.1 ± 1.1	rim			
3	·	68.55 ± 0.87	0.0449 ± 0.0034	93.7 ± 1.2	93.4 ± 1.2				
-		Weighted mean	n age (n = 5: 95% CI)	94.6 ± 2.1 Ma (N	1SWD = 2.3				
(1) C		h	-1 206 pl. (238 rt 207 pl /	23511					
(1) Co	nimon P	b corrected by assum	206 pt /238 tt 208 pt /	²³² T	ance.				
(2) Co	(2) Common Pb corrected by assuming 209 Pb/ 238 U- 208 Pb/ 232 Th age-concordance.								

Table S5. Continued.

		Isotopi	c ratios	²³⁸ U- ²⁰⁶ Pb*	ages (Ma)	Domonico	
Grain	Spot	²³⁸ U/ ²⁰⁶ Pb*	²⁰⁷ Pb*/ ²⁰⁶ Pb*	(1)	(2)	Remarks	
NAM3	37 (from	Namekawa1)					
1		61.61 ± 1.34	$0.0513\ \pm\ 0.0034$	$103.4~\pm~2.3$	103.8 ± 2.2		
2		68.48 ± 1.21	$0.0478\ \pm\ 0.0021$	$93.5~\pm~1.6$	$93.5~\pm~1.6$	excluded [†]	
3		62.40 ± 1.17	$0.0465\ \pm\ 0.0015$	102.5 ± 1.9	102.5 ± 1.9		
4	1	58.72 ± 1.27	$0.0445\ \pm\ 0.0069$	$109.4~\pm~2.2$	108.8 ± 2.3	core, excluded [†]	
	2	63.24 ± 1.50	$0.0385\ \pm\ 0.0050$	101.8 ± 2.3	101.1 ± 2.4	rim	
5		$62.27 ~\pm~ 1.54$	$0.0465\ \pm\ 0.0051$	$102.9~\pm~2.5$	$102.7~\pm~2.5$		
6		55.83 ± 1.49	$0.0542\ \pm\ 0.0041$	113.6 ± 3.1	$114.4~\pm~3.0$	excluded [†]	
7	1	64.65 ± 1.38	$0.0443\ \pm\ 0.0056$	$99.4~\pm~2.0$	$99.0~\pm~2.1$	core	
	2	64.90 ± 1.38	$0.0451\ \pm\ 0.0041$	$98.9~\pm~2.1$	$98.6~\pm~2.1$	rim	
8		64.91 ± 1.41	$0.0403\ \pm\ 0.0043$	$99.2~\pm~2.1$	$98.6~\pm~2.1$		
9		63.37 ± 1.22	$0.0479\ \pm\ 0.0027$	$100.9~\pm~1.9$	$100.9~\pm~1.9$		
10		$56.86~\pm~0.98$	0.0443 ± 0.0028	$112.8~\pm~1.9$	112.4 ± 1.9	excluded [†]	
11		65.35 ± 1.38	$0.0457\ \pm\ 0.0032$	$97.9~\pm~2.0$	$97.9~\pm~2.0$		
12	1	63.52 ± 0.99	0.0454 ± 0.0024	100.8 ± 1.5	100.7 ± 1.6	rim	
	2	64.92 ± 1.37	0.0562 ± 0.0025	97.5 ± 2.1	$98.5~\pm~2.1$	core	
13		52.91 ± 1.11	0.0471 ± 0.0023	120.7 ± 2.5	120.7 ± 2.5	excluded [†]	
14		63.79 ± 1.03	0.0470 ± 0.0025	100.4 ± 1.6	100.3 ± 1.6		
15		66.56 ± 1.03	0.0534 ± 0.0016	$95.5~\pm~1.5$	96.1 ± 1.5		
16		64.78 ± 1.42	0.0382 ± 0.0067	$99.2~\pm~2.0$	$98.8~\pm~2.2$		
17		58.57 ± 1.18	0.0508 ± 0.0022	108.8 ± 2.2	109.1 ± 2.2	excluded [†]	
18		63.71 ± 1.43	0.0492 ± 0.0038	100.2 ± 2.3	100.4 ± 2.2		
19		58.48 ± 1.48	0.0394 ± 0.0063	110.5 ± 2.8	109.3 ± 2.8	excluded [†]	
20		65.02 ± 1.45	0.0485 ± 0.0028	$98.3~\pm~2.2$	$98.4~\pm~2.2$		
21		66.14 ± 1.45	0.0510 ± 0.0052	96.4 ± 2.1	96.7 ± 2.1		
22		66.60 ± 1.36	0.0414 ± 0.0053	96.9 ± 1.9	96.1 ± 1.9		
23		60.92 ± 1.33	0.0583 ± 0.0073	103.6 ± 2.2	105.0 ± 2.3		
24		65.18 ± 1.05	0.0475 ± 0.0024	$98.2~\pm~1.6$	98.2 ± 1.6		
		Weighted me	an age (n = 20; 95% CI): 99.4 \pm 1.1 Ma (N	MSWD = 1.4)		
NMO	7 (from	Nimyo)					
1		67.82 ± 1.11	$0.0486\ \pm\ 0.0038$	$94.3~\pm~1.5$	$94.4~\pm~1.5$		
2		$65.27~\pm~0.88$	$0.0484~\pm~0.0016$	$98.0~\pm~1.3$	$98.0~\pm~1.3$		
3		$69.03~\pm~2.04$	$0.0439\ \pm\ 0.0061$	$92.7~\pm~2.7$	$92.7~\pm~2.7$		
4		79.76 ± 1.19	$0.0521\ \pm\ 0.0044$	$79.9~\pm~1.2$	$80.3~\pm~1.2$	$excluded^{\dagger}$	
5		$68.26~\pm~0.88$	$0.0454~\pm~0.0028$	$94.0~\pm~1.2$	$93.8~\pm~1.2$		
6		$67.27\ \pm\ 0.91$	$0.0447\ \pm\ 0.0030$	$95.5~\pm~1.3$	$95.1~\pm~1.3$		
7		$65.09 \ \pm \ 0.90$	$0.0451\ \pm\ 0.0013$	$98.3~\pm~1.3$	$98.3~\pm~1.3$		
8		$66.62 ~\pm~ 1.48$	$0.0423\ \pm\ 0.0059$	$96.3~\pm~2.0$	$96.0~\pm~2.1$		
9	1	$3.42~\pm~0.04$	$0.1184\ \pm\ 0.0012$	$1626.6\ \pm\ 15.8$	$1654.5\ \pm\ 16.0$	core, excluded ^{\dagger}	
	2	$68.82 \ \pm \ 1.17$	$0.0454\ \pm\ 0.0043$	$93.3~\pm~1.6$	$93.0~\pm~1.6$	rim	
10		$66.89\ \pm\ 0.89$	$0.0486~\pm~0.0030$	$95.6~\pm~1.3$	$95.7~\pm~1.3$		
11		$65.62 \ \pm \ 1.07$	$0.0455\ \pm\ 0.0043$	$97.8~\pm~1.5$	$97.5~\pm~1.6$		
12		$68.55 \ \pm \ 0.98$	$0.0472\ \pm\ 0.0039$	$93.4~\pm~1.3$	$93.4~\pm~1.3$		
13		67.52 ± 1.14	$0.0492~\pm~0.0040$	$94.6~\pm~1.6$	$94.8~\pm~1.6$		
14	1	$66.48 \ \pm \ 1.14$	$0.0483\ \pm\ 0.0029$	$96.2~\pm~1.7$	$96.2~\pm~1.6$	rim	
	2	$15.50\ \pm\ 0.25$	$0.0539\ \pm\ 0.0016$	$403.4~\pm~6.3$	$403.0\ \pm\ 6.2$	core, excluded †	
15		$65.19\ \pm\ 0.94$	$0.0482~\pm~0.0029$	$98.1~\pm~1.4$	$98.1~\pm~1.4$		
16		69.11 ± 1.31	$0.0524~\pm~0.0033$	$92.1~\pm~1.8$	$92.6~\pm~1.7$		
17		$68.61 \ \pm \ 1.12$	$0.0467\ \pm\ 0.0032$	$93.4~\pm~1.5$	$93.3~\pm~1.5$		
18		$66.61\ \pm\ 0.93$	$0.0481\ \pm\ 0.0016$	$96.0~\pm~1.3$	$96.1~\pm~1.3$		
19		$67.09 \ \pm \ 0.95$	$0.0453\ \pm\ 0.0021$	$95.5~\pm~1.3$	$95.4~\pm~1.3$		
		Weighted me	an age (n = 18; 95% CI): 95.5 \pm 0.9 Ma (N	MSWD = 1.6)		

Table S5. Continued.

(1) Common Pb corrected by assuming ²⁰⁶Pb/²³⁸U-²⁰⁷Pb/²³⁵U age-concordance.

(2) Common Pb corrected by assuming ${}^{206}Pb/{}^{238}U-{}^{208}Pb/{}^{232}Th$ age-concordance.

[†] Excluded from the calculation of the weighted mean age.

Croin	Smot	Isotopi	c ratios	238U-206Pb*	ages (Ma)	Domorko			
Grain	spor	²³⁸ U/ ²⁰⁶ Pb*	²⁰⁷ Pb*/ ²⁰⁶ Pb*	(1)	(2)	Remarks			
NMO11 (from Nimyo)									
1		$68.38~\pm~1.92$	$0.0473\ \pm\ 0.0078$	$93.7~\pm~2.6$	$93.6~\pm~2.6$				
2		$67.79 ~\pm~ 1.84$	$0.0473~\pm~0.0042$	$94.4~\pm~2.5$	$94.4~\pm~2.5$				
3	1	$67.34 \ \pm \ 1.25$	$0.0442~\pm~0.0040$	$95.5~\pm~1.8$	$95.0~\pm~1.8$	core			
	2	69.12 ± 1.41	$0.0465\ \pm\ 0.0037$	$92.6~\pm~1.9$	$92.6~\pm~1.9$	rim			
4		$70.64 ~\pm~ 1.93$	$0.0532\ \pm\ 0.0047$	$90.0~\pm~2.5$	$90.6~\pm~2.5$				
5		65.90 ± 1.30	$0.0475~\pm~0.0025$	$97.1~\pm~1.9$	$97.1~\pm~1.9$				
6		$65.98 \ \pm \ 1.62$	$0.0489~\pm~0.0040$	$96.9~\pm~2.4$	$97.0~\pm~2.4$				
7		$67.01 \ \pm \ 1.29$	$0.0464~\pm~0.0025$	$95.5~\pm~1.8$	$95.5~\pm~1.8$				
8		$66.56 \ \pm \ 1.69$	$0.0484~\pm~0.0034$	$96.1~\pm~2.5$	$96.1~\pm~2.4$				
9		$70.43~\pm~2.21$	$0.0556~\pm~0.0048$	$90.0~\pm~2.9$	$90.9~\pm~2.8$				
10	1	69.69 ± 1.64	$0.0537\ \pm\ 0.0035$	$91.2~\pm~2.2$	$91.9~\pm~2.1$	core			
	2	$64.77 \ \pm \ 1.26$	$0.0484\ \pm\ 0.0030$	$98.7~\pm~1.9$	$98.8~\pm~1.9$	rim			
11	1	$64.79 \ \pm \ 1.49$	$0.0406~\pm~0.0049$	$99.6~\pm~2.2$	$98.7~\pm~2.3$	core			
	2	$63.88 \ \pm \ 1.58$	$0.0411\ \pm\ 0.0060$	$100.3~\pm~2.4$	$100.1~\pm~2.5$	rim			
12		$64.74 \ \pm \ 2.23$	$0.0423\ \pm\ 0.0059$	$98.8~\pm~3.4$	$98.8~\pm~3.4$				
13		66.90 ± 1.28	$0.0469~\pm~0.0022$	$95.6~\pm~1.8$	$95.6~\pm~1.8$				
14		$64.48 \ \pm \ 1.18$	$0.0568\ \pm\ 0.0021$	$98.1~\pm~1.8$	$99.2~\pm~1.8$				
15	1	$64.81 \ \pm \ 1.20$	$0.0489\ \pm\ 0.0019$	$98.6~\pm~1.8$	$98.7~\pm~1.8$	core			
	2	$70.49~\pm~1.28$	$0.0521\ \pm\ 0.0021$	$90.3~\pm~1.6$	$90.8~\pm~1.6$	rim			
16		69.06 ± 1.70	$0.0529\ \pm\ 0.0035$	$92.1~\pm~2.3$	$92.7~\pm~2.3$				
17		$65.46 \ \pm \ 1.25$	$0.0522~\pm~0.0051$	$97.2~\pm~1.8$	$97.7~\pm~1.8$				
18		65.50 ± 1.20	$0.0485~\pm~0.0025$	$97.6~\pm~1.8$	$97.7~\pm~1.8$				
19		$65.24 ~\pm~ 1.52$	$0.0508~\pm~0.0031$	$97.7~\pm~2.3$	$98.1~\pm~2.3$				
20		$66.05~\pm~1.88$	$0.0539\ \pm\ 0.0055$	$96.1~\pm~2.8$	$96.9~\pm~2.7$				
21		$65.27 ~\pm~ 1.19$	$0.0497~\pm~0.0024$	$97.8~\pm~1.8$	$98.0~\pm~1.8$				
22		$55.17 ~\pm~ 1.50$	$0.0421\ \pm\ 0.0037$	$115.8~\pm~3.1$	$115.8~\pm~3.1$	excluded [†]			
23		$69.68~\pm~1.23$	$0.0522~\pm~0.0046$	$91.4~\pm~1.6$	$91.9~\pm~1.6$				
24		$71.62 ~\pm~ 1.92$	$0.0522\ \pm\ 0.0044$	$88.9~\pm~2.4$	$89.4~\pm~2.4$				
25		$67.47 ~\pm~ 1.43$	$0.0561\ \pm\ 0.0052$	$93.9~\pm~2.0$	$94.8~\pm~2.0$				
		Weighted mean	age $(n = 28: 95\% \text{ CI})$:	95.2 + 1.2 Ma (N	MSWD = 2.4				

Table S5. Continued.

(1) Common Pb corrected by assuming 206 Pb/ 238 U- 207 Pb/ 235 U age-concordance.

(2) Common Pb corrected by assuming 206 Pb/ 238 U- 208 Pb/ 232 Th age-concordance.

[†] Excluded from the calculation of the weighted mean age.

Fig. S1. Photomicrographs of igneous rock gravels collected from the Myojin Formation under cross-polarized light: (**a**) granite from Nimyo, (**b**) felsite from Namekawa2, (**c**) granite from Omogo2, (**d**) granodiorite from Omogo3, (**e**) tonalite from Omogo3, (**f**) quartz monzonite from Nimyo, (**g**) quartz monzodiorite from Namekawa1, (**h**) granite porphyry from Omogo1, (**i**) quartz porphyry from Omogo2, and (**j**) rhyolite from Tamatani. See Fig. 2 and Table S1 for sample locations. (**a**, **b**) Color images of Fig. 6a, b. The scale bar for (**i**) is 0.5 mm and 1 mm for the others. Abbreviations: Bt, biotite; Cal, calcite; Kfs, K-feldspar; Pl, plagioclase; Qtz, quartz; and Zrn, zircon.

Fig. S1. Continued.

Fig. S2. Harker variation diagrams showing whole-rock major and trace element variations in igneous rock gravels of the Myojin Formation (this study) and the Ryoke and San-yo granitoids (Tomonari, 1974; Tenpaku, 1982; Ishihara, 2003; Taga et al., 2004; Akasaki et al., 2013; Ishihara and Ohno, 2016; Ikeda et al., 2019).

Fig. S2. Continued.

Fig. S3. Anorthite (An)–albite (Ab)–orthoclase (Or) normative ternary diagram of igneous rock gravels of the Myojin Formation collected from the Omogo, Namekawa, and Nimyo areas. Plutonic rock fields are shown for (a) granodiorite, (b) granite, and (c) trondhjemite, based on Barker (1979).