補遺:上部三畳系層状チャートの主要元素分析結果について

調査地域と検討セクション

愛知・岐阜県境に位置する大山地域には、美濃帯上麻生ユニット(Wakita, 1988)の構成岩類が広く分布する.上麻生ユニットの砂岩,泥岩,チャートは、チャートー砕屑岩シ ークエンス(Matsuoka et al., 1994)を構成しており、下位より、下部トリアス系珪質粘土 岩層、中部トリアス系~下部ジュラ系チャート層、中部ジュラ系珪質泥岩層、中部~上部 ジュラ系砂岩-泥岩層からなる(Wakita, 1988).これらは、上・下限を衝上断層で挟まれ た厚さ数100m程度のスラストシートとして産する.大山地域では同じ層序を持ったユニ ットが、構造的に何度も繰り返して累重し、さらに西にプランジした褶曲軸を持つ向斜構 造(坂祝向斜)を形成している(Fig. A1).チャートー砕屑岩シークエンス構成岩石は、 海洋プレート上で形成された堆積物と考えられており、下位の珪質粘土岩層およびチャー ト層は深海遠洋性堆積物に、上位の珪質泥岩および砂岩-泥岩層は半遠洋性堆積物および 海溝充填タービダイトに比較されている(Matsuda and Isozaki, 1991).また古地磁気の検 討から、大山地域に分布する上部三畳系チャートは、低緯度から中緯度で堆積したことが 明らかにされている(Ando et al., 2001; Uno et al., 2015).

大山地域の層状チャートは、便宜的に構造的下位より CH-1, 2, 3, 4 とよばれている (Yao et al., 1980). 今回主要元素分析を行った層状チャートは、岐阜県東部坂祝町取組 の木曽川右岸に露出し、Yao et al. (1980)による CH-2 の上部に相当する(Fig. A1). 従 来の放散虫およびコノドント化石層序に基づくと、研究対象の層状チャートの年代は、後 期三畳紀ノーリアンに相当する(Sugiyama, 1997; Yamashita et al., 2018).

大山地域の層状チャートは、チャート単層間に挟まれる泥質部(粘土岩)の特徴により、 泥質部と珪質部の互層からなる B タイプ,ほとんど泥質部を挟まない F タイプ,両者の 中間的な A タイプチャートに区分されている(Sugiyama, 1997).本研究では、検討した 上部三畳系層状チャートのうち、側方へ数 m にわたり顕著な層厚変化の認められない、 赤色の B タイプチャートのみを研究対象とした(Fig. A2).特に本研究では、2つの異な

1

る年代をもつ層状チャートの珪質部・泥質部について,主要元素濃度の検討を行った.検 討した層状チャートの年代は,後期三畳紀ノーリアン後期のセバチアン(Sevatian)前期 (*E. bidentata* コノドント化石帯: Yamashita et al., 2018)およびノーリアン後期のセバチア ン後期(*M. hernsteini* コノドント化石帯)に相当する.本研究では,これらを便宜的に, それぞれ NHR, KC セクションとよぶことにする. NHR セクションの詳しい層準は, Onoue et al. (2016)の Fig. S4 を参照にされたい.また KC セクションは, Sugiyama (1997)のセクシ ョン K, 層準 K-36 付近に相当する (Fig. 23b; Sugiyama, 1997). NHR, KC セクション層 状チャートの珪質部および泥質部の厚さは,それぞれ 2.5-5 cm, 0.2-1cm 程度である.

試料の作成

本研究では、NHR, KC セクションの層状チャートから, 珪質部および泥質部試料を採 取した. 採取した合計 18 枚の珪質部については, 単層断面の薄片試料を作成し, 偏光顕 微鏡下で堆積組織の観察を行った. 次に採取した珪質部試料については, 層理面と平行に 岩石カッターで3から5分割し, 1試料の厚さが1 cm 以下となるようにした(例えば, 単層の厚さが5 cm の試料については, 層理面と平行に5分割). 分割した試料はグライン ダーで研磨し, 切断面や風化部を取り除いた. これらの珪質部試料および泥質部試料は, その後超純水を用いて超音波洗浄を1時間行い, 恒温機(60°C) で乾燥させた. 乾燥した 試料は, クリーンベンチ内で, メノウ乳鉢で5 mm 以下の大きさになるまで砕き, 再び超 音波洗浄を行った. これらの岩片は恒温機(60°C) で乾燥させたのち, クリーンベンチ内 で風化部や変質部, 細脈のない新鮮な岩片だけを選別した. これらの試料は, 最後にメノ ウ製遊星回転ボールミル(200 rpm, 90分)を用いて, 粉末試料を作成した.

主要元素分析

主要元素分析には、油圧プレス機でプレス成形(20t)したペレットを用いた.ペレットの作成には、セルロース系固結剤(PaNalytical 社製)と試料を 1:5 の割合で混合させた

2

粉末を用いた.分析には、熊本大学理学部設置の PaNalytical 社製エネルギー分散型 X 線 分析装置(Epsilon 3XLE, Mo 管球)を用いた.測定は各試料 3 回づつ行い、その平均値 を Table A1 に示した.定量分析に用いる検量線作成試料として、産業技術総合研究所地 質調査総合センター(GSJ)の標準試料 20 試料を用いた.測定時の検量線の正確度は、 Na₂O ± 0.08 wt.%, MgO ± 0.05 wt.%, Al₂O₃ ± 0.14 wt.%, SiO₂ ± 0.56 wt.%, P₂O₅ ± 0.03 wt.%, K₂O ± 0.06 wt.%, CaO ± 0.08 wt.%, TiO₂ ± 0.03 wt.%, MnO ± 0.01 wt.%, Fe₂O₃ ± 0.19 wt.% であ った. Table A2 に GSJ による日本のチャート標準試料 JCh-1 の測定結果を示す.本検量線 を用いて測定した結果と JCh-1 の推奨値は良い一致を示す.

文献

- Ando, A., Kodama, K. and Kojima, S., 2001, Low-latitude and southern hemisphere origin of
 Anisian (Triassic) bedded chert in the Inuyama area, Mino terrane, central Japan. *Jour. Geophys. Res.*, 106, 1973–1986.
- Imai, N., Terashima, S., Itoh, S. and Ando, A., 1996, 1996 compilation of analytical data on nine GSJ geochemical reference samples, "Sedimentary rock series". *Geostandard Newslett.*, 20, 165–216.
- Matsuda, T. and Isozaki, Y., 1991, Well-documented travel history of Mesozoic pelagic chert in Japan: from remote ocean to subduction zone. *Tectonics*, **10**, 475–499.
- Matsuoka, A., Hori, R., Kuwahara, K., Hiraishi, M., Yao, A. and Ezaki, Y., 1994, Triassic-Jurassic radiolarian-bearing sequences in the Mino terrane, central Japan. *Field trip guide book for the pre-conference excursion of INTERRAD VII, Osaka*, Organizing committee of INTERRAD VII, Osaka, 19–61.
- McLennan, S. M., 2001, Relationships between the trace element composition of sedimentary rocks and upper continental crust. *Geochem. Geophys. Geosyst.*, 2, 2000GC000109, doi: 10.1029/2000GC000109.

- Onoue, T., Sato, H., Yamashita, D., Ikehara, M., Yasukawa, K., Fujinaga, K., Kato, Y. and Matsuoka, A., 2016, Bolide impact triggered the Late Triassic extinction event in equatorial Panthalassa. *Sci. Rep.*, **6**, 29609, doi: 10.1038/srep29609.
- Sugiyama, K., 1997, Triassic and Lower Jurassic radiolarian biostratigraphy in the siliceous claystone and bedded chert units of the southeastern Mino Terrane, Central Japan. *Bull. Mizunami Fossil Mus.*, 24, 79–193.
- Uno, K., Yamashita, D., Onoue, T. and Uehara, D., 2015, Paleomagnetism of Triassic bedded chert from Japan for determining the age of an impact ejecta layer deposited on peri-equatorial latitudes of the paleo-Pacific Ocean: A preliminary analysis. *Phys. Earth Planet. Int.*, 249, 59–67.
- Wakita, K., 1988, Origin of chaotically mixed rock bodies in the Early Jurassic to Early Cretaceous sedimentary complex of the Mino Terrane, central Japan. Bull. Geol. Surv. Japan, 39, 675-757.
- Yamashita, D., Kato, H., Onoue, T. and Suzuki, N., 2018, Integrated Upper Triassic conodont and radiolarian biostratigraphies of the Panthalassa Ocean. *Paleont. Res.*, 22, 167–197.
- Yao, A., Matsuda, T. and Isozaki, Y., 1980, Triassic and Jurassic radiolarians from the Inuyama area, central Japan. *Jour. Geosci. Osaka City Univ.*, 23, 135–154.

Fig. A1. Geologic and location maps of the study sections along the Kiso River, central Japan.Modified after Wakita (1988).

Fig. A2. Field occurrence of Late Triassic bedded chert at Sakahogi in the Inuyama area in the Mino Belt, Japan. (a) lower Upper Norian (lower Sevatian; *Epigondolella bidentata* conodont zone) bedded chert. (b) upper Upper Norian (upper Sevatian; *Misikella hernsteini* conodont zone) bedded chert. Scale bars, 5 cm.

Table A1. Major element data for samples from the Sakahogi section. Major element compositions

 of the Sakahogi chert and claystone samples normalized to 100 wt%.

Sample	Height	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	P ₂ O ₅	K ₂ O	CaO	TiO ₂	MnO	Fe ₂ O ₃ *	BSiO ₂ [†]	No #	Ma #	ci #	K #	т: #
Sample	(cm)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	INGEF	WIGEE	OIEF	NEF	"EF
SH216-4	26.8	0.04	0.66	2.67	94.4	0.04	0.74	0.12	0.10	0.02	1.20	82.8	0.03	1 72	8 16	0.62	0.85
SH216-3	20.0	0.04	0.00	2.07	94.4	0.04	0.74	0.12	0.10	0.02	1.20	84.1	0.03	1./2	8.84	0.64	1.00
SH216-2	24.6	0.00	0.35	1 74	96.3	0.03	0.47	0.10	0.08	0.02	0.86	88.7	0.02	1.39	127	0.61	0.98
SH216-1	23.5	0.04	0.47	1.77	96.1	0.04	0.47	0.10	0.07	0.02	0.88	88.5	0.05	1.83	12.5	0.59	0.88
SH217-3	22.5	0.03	0.60	2.81	94.3	0.04	0.77	0.11	0.10	0.02	1.26	82.1	0.02	1 47	7 74	0.62	0.77
SH217-2	21.5	0.03	0.33	2.14	95.7	0.04	0.59	0.11	0.08	0.01	0.96	86.4	0.03	1.06	10.3	0.62	0.86
SH217-1	20.7	0.04	0.67	3.20	93.4	0.05	0.91	0.13	0.11	0.02	1.47	79.5	0.03	1.44	6.73	0.64	0.80
SH218-3	19.6	0.04	0.62	3.01	93.8	0.06	0.80	0.12	0.12	0.02	1.45	80.7	0.03	1.43	7.19	0.60	0.91
SH218-2	18.9	0.05	0.32	2.14	95.6	0.05	0.56	0.11	0.09	0.01	1.04	86.3	0.05	1.04	10.3	0.59	0.93
SH218-1	18.2	0.05	0.51	2.73	94.5	0.05	0.71	0.13	0.10	0.01	1.23	82.6	0.04	1.29	7.97	0.58	0.79
SH218-219	17.5	0.11	2.27	12.7	56.7	0.15	4.77	0.50	0.77	0.08	7.69	1.71	0.02	1.23	1.03	0.85	1.35
SH219-3	17.0	0.03	0.48	2.64	94.6	0.05	0.72	0.11	0.10	0.01	1.22	83.2	0.02	1.25	8.25	0.62	0.84
SH219-2	16.2	0.03	0.27	1.85	96.3	0.02	0.49	0.10	0.07	0.01	0.87	88.2	0.03	1.02	12.0	0.59	0.89
SH219-1	15.4	0.04	0.59	3.19	93.5	0.06	0.89	0.14	0.12	0.02	1.41	79.7	0.02	1.27	6.75	0.62	0.80
SH220-219	14.7	0.14	3.06	17.8	62.7	0.16	5.71	0.62	0.87	0.07	8.78		0.02	1.18	0.81	0.72	1.09
SH220-3	14.0	0.05	0.57	2.78	94.3	0.05	0.76	0.11	0.10	0.02	1.30	82.2	0.03	1.42	7.82	0.61	0.84
SH220-2	13.2	0.04	0.29	1.93	96.1	0.02	0.52	0.09	0.08	0.02	0.91	87.7	0.04	1.04	11.5	0.61	0.90
SH220-1	12.4	0.04	0.56	2.84	94.2	0.06	0.76	0.12	0.10	0.02	1.28	81.9	0.03	1.37	7.65	0.61	0.80
SH221-5	11.5	0.04	0.53	2.81	94.2	0.05	0.78	0.12	0.11	0.01	1.35	82.0	0.02	1.29	7.72	0.62	0.89
SH221-4	10.5	0.04	0.36	2.15	95.5	0.03	0.59	0.10	0.09	0.01	1.10	86.2	0.04	1.15	10.2	0.61	0.96
SH221-3	9.5	0.06	0.29	1.95	96.0	0.04	0.52	0.10	0.08	0.01	0.97	87.5	0.06	1.03	11.3	0.60	0.96
SH221-2	8.5	0.04	0.37	2.19	95.5	0.04	0.59	0.11	0.09	0.02	1.09	86.0	0.03	1.18	10.1	0.60	0.94
SH221-1	7.7	0.04	0.69	3.14	93.6	0.06	0.86	0.13	0.12	0.02	1.38	79.9	0.03	1.52	6.86	0.62	0.83
SH222-3	6.5	0.03	0.70	3.51	92.8	0.05	1.03	0.14	0.15	0.02	1.59	77.6	0.02	1.37	6.10	0.66	0.95
SH222-2	5.4	0.04	0.39	2.48	94.9	0.05	0.73	0.12	0.11	0.01	1.21	84.1	0.03	1.09	8.80	0.66	0.96
SH222-1	4.3	0.03	0.75	3.37	93.0	0.07	0.92	0.17	0.13	0.02	1.52	78.4	0.02	1.53	6.36	0.61	0.85
SH223-222	3.6	0.12	3.00	16.8	64.6	0.13	5.76	0.53	0.83	0.08	8.15		0.01	1.23	0.88	0.77	1.09
SH223-3	3.0	0.04	0.64	2.61	94.5	0.04	0.70	0.10	0.09	0.02	1.26	83.2	0.03	1.70	8.35	0.60	0.79
SH223-2	2.2	0.05	0.56	2.75	94.3	0.05	0.75	0.12	0.11	0.01	1.26	82.4	0.04	1.41	7.92	0.62	0.86
SH223-1	1.3	0.05	0.86	3.71	92.2	0.07	1.07	0.15	0.15	0.03	1.76	76.0	0.03	1.59	5.72	0.65	0.87
SH224-223	0.5	0.14	3.15	16.4	65.3	0.11	5.51	0.48	0.82	0.08	8.03		0.02	1.32	0.92	0.76	1.11
	00 F					0.05											
NHR97-3	32.5	0.05	0.49	2.45	94.8	0.05	0.69	0.10	0.11	0.02	1.19	84.2	0.04	1.39	8.93	0.63	1.01
NHR97-2	31.3	0.04	0.37	2.06	95.7	0.05	0.57	0.10	0.10	0.03	1.05	80.8	0.04	1.22	10.7	0.62	1.03
	30.3	0.04	0.40	2.29	95.5	0.04	0.02	0.09	1.07	0.02	7.70	00.0	0.04	1.40	9.59	0.01	1.45
	29.0	0.13	2.09	10.3	04.7	0.24	0.60	0.70	0.11	0.10	1.79	02.7	0.02	1.14	0.70	0.63	0.00
	29.2	0.04	0.55	2.55	94.7	0.04	0.69	0.10	0.11	0.00	1.22	03.7	0.05	1.51	0.04	0.01	1.02
NHR96-2	20.0	0.05	0.35	1.00	95.0	0.04	1.02	0.11	0.09	0.35	1.01	07.5 76.0	0.05	1.27	5.09	0.65	0.02
NHR95-2	20.0	0.04	0.00	1.96	95.4	0.00	0.52	0.14	0.10	0.10	1.04	87.2	0.02	1.02	113	0.00	0.90
NHR94-95	24.4	0.00	3.20	17.6	57.6	0.16	5.89	0.00	0.00	0.00	13 70	07.2	0.04	1.40	0.75	0.00	1 20
NHR94-3	23.0	0.03	0.62	2 01	94.0	0.03	0.82	0.10	0.11	0.03	1 31	81.4	0.07	1.46	7.45	0.75	0.88
NHR94-2	23.2	0.00	0.02	1 / 3	96.9	0.00	0.30	0.10	0.07	0.00	0.76	90.7	0.02	1.40	15.6	0.62	1.01
NHR93-94	22.0	0.12	3.34	16.4	52.4	0.02	5.43	0.50	0.99	0.62	11.56	50.7	0.00	1.41	0.74	0.02	1.35
NHR93-5	21.4	0.04	0.74	2.74	94.0	0.04	0.73	0.11	0.11	0.04	1.44	82.1	0.03	1.85	7.90	0.60	0.92
NHR93-4	20.5	0.04	0.38	1.83	95.8	0.04	0.49	0.12	0.09	0.14	1.11	87.8	0.05	1.42	12.1	0.60	1.05
NHR93-3	19.5	0.03	0.41	2.18	95.1	0.06	0.65	0.14	0.11	0.05	1.30	85.6	0.03	1.29	10.0	0.67	1.12
NHR93-2	18.5	0.03	0.32	1.91	95.8	0.04	0.56	0.11	0.09	0.02	1.10	87.5	0.03	1.15	11.6	0.66	1.08
NHR93-1	17.5	0.03	0.51	2.53	94.4	0.06	0.74	0.13	0.11	0.02	1.48	83.4	0.02	1.40	8.58	0.66	0.96
NHR92-3	16.5	0.04	0.47	2.32	95.0	0.03	0.64	0.11	0.10	0.02	1.23	85.0	0.04	1.39	9.46	0.63	0.93
NHR92-2	15.5	0.03	0.34	1.95	95.9	0.04	0.54	0.11	0.09	0.02	0.98	87.4	0.03	1.18	11.3	0.62	0.99
NHR92-1	14.5	0.04	0.50	2.62	94.6	0.06	0.77	0.13	0.10	0.01	1.21	83.2	0.03	1.33	8.33	0.66	0.87
NHR91-92	14.0	0.13	3.29	17.8	50.2	0.35	6.12	1.05	1.19	0.37	9.30		0.01	1.27	0.65	0.77	1.48
NHR91-3	13.7	0.05	0.74	3.16	93.4	0.06	0.87	0.15	0.12	0.02	1.44	79.7	0.03	1.62	6.81	0.62	0.84
NHR91-2	12.8	0.04	0.47	2.10	95.3	0.05	0.57	0.13	0.09	0.02	1.18	86.2	0.04	1.53	10.5	0.62	0.95
NHR91-1	12.0	0.05	0.77	2.98	93.6	0.06	0.80	0.15	0.10	0.02	1.44	80.7	0.03	1.77	7.24	0.61	0.74
NHR90-3	11.2	0.05	0.69	2.99	93.5	0.06	0.84	0.17	0.11	0.02	1.53	80.6	0.04	1.58	7.21	0.64	0.84
NHR90-2	10.3	0.03	0.46	2.43	94.9	0.04	0.68	0.12	0.10	0.01	1.23	84.3	0.03	1.30	9.00	0.63	0.92
NHR90-1	9.5	0.04	0.61	2.93	93.9	0.05	0.84	0.13	0.11	0.02	1.38	81.2	0.03	1.44	7.39	0.65	0.83
NHR89-90	9.0	0.15	2.53	15.9	52.5	0.30	5.82	0.93	1.15	0.36	8.59		0.02	1.10	0.76	0.82	1.60
NHR89-3	8.7	0.04	0.82	3.54	92.5	0.06	0.99	0.16	0.14	0.02	1.75	77.1	0.02	1.60	6.02	0.63	0.87
NHR89-2	7.8	0.04	0.33	2.06	95.6	0.04	0.57	0.12	0.09	0.02	1.12	86.6	0.04	1.09	10.7	0.63	0.97
NHR89-1	6.9	0.05	0.71	3.51	92.6	0.07	1.02	0.16	0.14	0.02	1.67	77.4	0.03	1.39	6.08	0.65	0.91
NHR88-3	6.0	0.02	0.70	3.58	92.5	0.06	1.00	0.14	0.15	0.02	1.82	77.0	0.01	1.34	5.95	0.63	0.93
NHR88-2	5.3	0.05	0.47	2.04	95.4	0.04	0.51	0.09	0.08	0.11	1.16	86.6	0.04	1.60	10.8	0.57	0.91
NHR88-1	4.5	0.03	0.63	2.92	94.0	0.05	0.78	0.11	0.10	0.02	1.41	81.3	0.02	1.48	7.41	0.60	0.80

* Total iron as Fe₂O₃.

† Biogenic silica (BSiO₂) was calculated as follows:

 $BSiO_2 = SiO_{2sample} - [SiO_{2UCC} \times (Al_2O_{3sample}/Al_2O_{3UCC})],$

where UCC is the composition of upper continental crust (UCC; McLennan, 2001).

Concentrations of Na, Mg, Si, K and Ti were normalized using Al concentrations and compared with those of the UCC composition to obtain enrichment factors.

	Na ₂ O (%)	MgO (%)	Al ₂ O ₃ (%)	SiO ₂ (%)	P ₂ O ₅ (%)	K ₂ O (%)	CaO (%)	TiO ₂ (%)	MnO (%)	Fe ₂ O ₃ * (%)
This work [†] (n = 20) [#]	0.037 ±0.006	0.073 ±0.003	0.733 ±0.004	97.70 ± 0.09	0.016 ± 0.004	0.220 ±0.002	0.046 ± 0.001	0.030 ±0.006	0.018 ± 0.001	0.355 ± 0.001
Reference (Imai et al., 1996)	0.031	0.075	0.734	97.81	0.017	0.221	0.045	0.032	0.017	0.356

Table A2. Analytical results of major element in reference material (JCh-1) by XRF.

* Total iron as Fe₂O₃.

† Errors are standard deviations of repeated analyses (1 s).

n means number of analysis.